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Preface

In this thesis, Self-supervised Scene Representation Learning, we propose novel approaches to enable

artificial intelligence models to infer representations of 3D environments conditioned exclusively on

posed images.

• We propose to exploit 3D-structured feature spaces in the form of voxelgrids of features,

combined with a principled image formation model that enables occlusion reasoning. This

method enables high-quality novel-view synthesis of real-world environments, and recovers

geometry in an unsupervised manner.

• We propose a continuous, 3D-structure aware neural scene representation, Scene Representa-

tion Networks (SRNs). This enables the learning of priors over 3D environments and thereby,

full 3D reconstruction of simple scenes from few observations.

• We demonstrate that the features discovered by SRNs in a self-supervised manner contain

semantic information that can be leveraged for dense 3D semantic segmentation with very

little labeled data in a semis-supervised learning regime.

This dissertation is based on the following publications, all of which are collaborative works. For

each publication, the contributions of each author are listed.

Sitzmann, V., Thies, J., Heide, F., Niessner, M., Wetzstein, G., and Zollhöfer, M., Deepvoxels:

Learning persistent 3d feature embeddings, Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, c©IEEE, 2019 [1]. This work is covered in Chapter 2. The initial idea

was conceived by Dr. Zollhöfer, Dr. Heide, and the author. The scene representation and rendering

algorithm were developed by the author. All the authors contributed equally to the writing of the

final published article.

Sitzmann, V., Zollhöfer, M., and Wetzstein, G., Scene representation networks: Continuous 3D-

structure-aware neural scene representations, Advances in Neural Information Processing Systems,

2019 [2]. This work is covered in Chapter 3. The initial idea was conceived by Prof. Wetzstein, Dr.

Zollhöfer, and the author. The scene representation, generalization scheme, and rendering algorithm
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were developed by the author. The author wrote a significant portion of the published article that

all authors took part in writing.

Kohli, A., Sitzmann, V., and Wetzstein, G., Inferring Semantic Information with 3D Neural Scene

Representations. arXiv, 2020 [3]. This work is covered in Chapter 4. The initial idea was conceived

by the author. Amit Kohli and the author jointly developed the semi-supervised training scheme for

semantic segmentation with scene representation networks. The published manuscript was written

by all authors.
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ing mentor and collaborator during my first steps in 3D computer vision, computer graphics, and

machine learning. Michael is not only an amazing researcher, but also one of the most humble,

supportive and knowledgeable collaborators I had the pleasure to interact with.

During my time at Stanford, I interacted most with Dr. Robert Konrad, Dr. Nitish Padmanaban,

Dr. Julien Martel, Dr. Kevin Boyle, and Gabe Buckmaster. I am grateful not only for many fruitful

and thought-provoking discussions, but also for their continuous support as friends.

I would like to thank Prof. Noah Snavely and Richard Tucker for hosting me at Google AI

in New York City during the summer of 2019. Noah’s work was a key inspiration for my passion

for 3D computer vision, and it was a privilege collaborating on questions in generalization and

compositionality in implicit neural representations.

I’d like to thank my parents and my sister for their continuing and loving support, for being

amazing role models of great human beings, and for the best upbringing one could wish for.

Lastly, I would like to thank all my collaborators and colleagues that share my passion for this

line of work, and I am looking forward to many more illuminating discussions in the future.

vi



Contents

Preface iv

Acknowledgments vi

1 Introduction and Background 1

1.1 Self-supervised Scene Representation Learning . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Example Scene Representation Learner . . . . . . . . . . . . . . . . . . . . . 4

1.1.3 The Role of Inductive Biases . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Research Questions and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 DeepVoxels 9

2.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.2 Architecture Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Scene Representation Networks 21

3.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.1 Representing Scenes as Functions . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.2 Neural Rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.3 Generalizing Across Scenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.4 Joint Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

vii



4 Inferring Semantic Information with SRNs 33

4.1 Prior work in semantic segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.1 Semantically-aware Scene Representation Networks . . . . . . . . . . . . . . . 36

4.2.2 Semi-Supervised Learning of Semantically-aware SRNs . . . . . . . . . . . . . 37

4.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3.1 Representation learning for semi-supervised semantic segmentation. . . . . . 41

4.3.2 2D reference models with novel-view oracle. . . . . . . . . . . . . . . . . . . . 42

4.3.3 Instance Interpolation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3.4 3D reconstruction from semantic mask. . . . . . . . . . . . . . . . . . . . . . 44

4.3.5 Failure cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Conclusion 46

5.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

A DeepVoxels additional results 50

A.1 Results on two Additional Synthetic Scenes . . . . . . . . . . . . . . . . . . . . . . . 50

A.2 Sensitivity to Number of Training Images . . . . . . . . . . . . . . . . . . . . . . . . 51

A.3 Sensitivity to Volume Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

A.4 Sensitivity to Additive Rotational Noise . . . . . . . . . . . . . . . . . . . . . . . . . 51

A.5 Results on Real-World Captures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

A.6 Failure Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

A.7 DeepVoxels Submodule Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

A.8 Baseline Architecture Tatarchenko et al. [4] . . . . . . . . . . . . . . . . . . . . . . . 55

A.9 Baseline Architecture Worrall et al. [5] . . . . . . . . . . . . . . . . . . . . . . . . . . 56

A.10 Baseline Architecture Pix2Pix (Isola et al. [6]) . . . . . . . . . . . . . . . . . . . . . . 57

A.11 Comparison of Ground-Truth Depth to Estimated Depth . . . . . . . . . . . . . . . 58

A.12 Pose Extrapolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

B Scene Representation Networks additional results 60

B.1 Additional Results on Neural Ray Marching . . . . . . . . . . . . . . . . . . . . . . . 60

B.2 Comparison to DeepVoxels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

B.3 Reproducibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

B.3.1 Architecture Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

B.3.2 Time & Memory Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

B.3.3 Dataset Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

viii



B.3.4 SRNs Training Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

B.4 Relationship to per-pixel autoregressive methods . . . . . . . . . . . . . . . . . . . . 67

B.5 Baseline Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

B.5.1 Deterministic Variant of GQN . . . . . . . . . . . . . . . . . . . . . . . . . . 68

B.5.2 Tatarchenko et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

B.5.3 Worrall et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

B.6 Differentiable Ray-Marching in the context of classical renderers . . . . . . . . . . . 69

B.7 Trade-offs of the Pixel Generator vs. CNN-based renderers . . . . . . . . . . . . . . 72

B.8 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

ix



List of Tables

2.1 Quantitative comparison of the proposed DeepVoxels model to state-of-the-art baselines. 17

3.1 Quantitative comparison of Scene Representation Networks with baseline models. . . 29

4.1 Quantitative comparison of semi-supervised and supervised approaches for semantic

segmentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

A.1 Quantitative comparison of DeepVoxels to state-of-the-art baselines on two additional

objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

B.1 Quantitative comparison of Scene Representation Networks and DeepVoxels. . . . . 63

x



List of Figures

1.1 Visualization of self-supervised representation learning framework . . . . . . . . . . . 3

2.1 Visualization of training- and test-time behavior of proposed DeepVoxels model. . . 10

2.2 Architecture overview of proposed DeepVoxels model. . . . . . . . . . . . . . . . . . 12

2.3 Illustration of the occlusion-aware projection operation. . . . . . . . . . . . . . . . . 13

2.4 Qualitative comparison of DeepVoxels output to state-of-the-art baselines on four

objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Qualitative comparison of DeepVoxels with and without the proposed occlusion rea-

soning module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6 Novel views of real captures generated with the proposed DeepVoxels model. . . . . 20

3.1 Architecture overview of Scene Representation Networks. . . . . . . . . . . . . . . . 22

3.2 Qualitative comparison of Scene Representation Networks and the Generative Query

Network on Shepard-Metzler objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Non-rigid deformation of a face with Scene Representation Networks. . . . . . . . . . 27

3.4 Visualization of normal maps reconstructed by Scene Representation Networks in a

self-supervised manner. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5 Interpolating between object geometry and appearance by interpolating auto-decoder

latent codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.7 Reference views for few-shot reconstruction. . . . . . . . . . . . . . . . . . . . . . . . 28

3.6 Qualitative comparison of Scene Representation Networks with baseline models. . . . 29

3.8 Failure cases of Scene Representation Networks. . . . . . . . . . . . . . . . . . . . . . 30

4.1 Visualization of input-output behavior of proposed semantic segmentation model. . . 34

4.2 Overview of the proposed semi-supervised method for semantic segmentation. . . . . 36

4.3 Qualitative comparison of the proposed semantic segmentation model with single view

baselines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4 Qualitative comparison of semi-supervised and fully supervised approaches for seman-

tic segmentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

xi



4.5 Output of proposed semantic segmentation model under interpolation of object-representing

latent codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.6 Inferring RGB from semantic segmentation mask. . . . . . . . . . . . . . . . . . . . . 43

4.7 Failure cases of proposed semantic segmentation model. . . . . . . . . . . . . . . . . 44

A.1 Qualitative comparison on two additional objects. . . . . . . . . . . . . . . . . . . . 50

A.2 Impact of the number of training images on DeepVoxels performance. . . . . . . . . 51

A.3 Impact of volume resolution on DeepVoxels performance. . . . . . . . . . . . . . . . 52

A.4 Impact of additive geometric noise in camera poses on DeepVoxels performance. . . 52

A.5 Failure cases of the DeepVoxels model. . . . . . . . . . . . . . . . . . . . . . . . . . . 53

A.6 Precise architecture visualizations for all DeepVoxels submodules. . . . . . . . . . . . 54

A.7 Architecture visualization for the baseline model proposed by Tatarchenko et al. [4]. 55

A.8 Architecture visualization for the baseline model proposed by Worrall et al. [5]. . . . 56

A.9 Architecture visualization for the baseline model proposed by Isola et al. [6]. . . . . . 57

A.10 Qualitative comparison of depth maps inferred by proposed DeepVoxels model and

ground-truth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

A.11 Example output of DeepVoxels model for out-of-distribution camera parameters. . . 59

B.1 Visualization of ray marching progress and final reconstructed geometry. . . . . . . . 61

B.2 Qualitative results on objects from DeepVoxels. . . . . . . . . . . . . . . . . . . . . . 62

B.3 Visualization of undersampled letters on side of DeepVoxels cube. . . . . . . . . . . . 62

B.4 Scene Representation Networks output with convolutional neural network renderer. . 62

B.5 Ray-marcher focused architecture visualization of SRNs. . . . . . . . . . . . . . . . . 64

B.6 Precise model architecture of baseline method proposed by [5]. . . . . . . . . . . . . 70

xii



Chapter 1

Introduction and Background

Humans have an extraordinary understanding of their physical environment. This is a cornerstone

of intelligent behavior, and fundamental to our everyday lives. Central to this skill is scene repre-

sentation. Scene representation is the process of converting observations of an environment—visual,

haptic, auditory, or otherwise—into a compact model of the environment [7].

The field of artificial intelligence has long sought to reproduce the process of scene represen-

tation. Besides its role in general intelligence, it is also a key building block of applications of

computer science that require interaction or interpretation of observations captured in our world,

such as autonomous navigation and robotic grasping. Its applications further extend to fields such

as computer graphics, where we are interested in discovering compact representations of 3D scenes

and image formation models to improve speed and accuracy of rendering algorithms. The purpose

of this thesis is to advance the field of machine learning of scene representations, towards artificial

intelligence that can infer accurate models of 3D environments.

1.1 Self-supervised Scene Representation Learning

We are interested in algorithms that ingest image observations of an environment and convert them

into a compact representation that encodes the environment’s properties such that they may be

leveraged for other downstream tasks. To this end, we leverage Deep Neural Networks (DNNs),

a powerful new class of algorithms. From skin cancer detection [8] to image classification [9] to

scene segmentation, object detection, and tracking in autonomous vehicles—DNNs often outperform

conventional algorithms by a large margin.

In all of these examples, a DNN must infer some property of an environment, given a set of

incomplete observations. DNNs solve such problems by transforming observations into a feature

representation of the scene [10]. Such a neural scene representation [11] allows the DNN to reason

1



CHAPTER 1. INTRODUCTION AND BACKGROUND 2

about the environment, including previously unobserved information. We note that the word “neu-

ral” in this context does not imply any connections to the nervous system, but is rather alluding to

feature-based representations learned by neural networks.

Today, DNNs with seemingly unlimited capacity to learn almost anything excel in supervised

settings: tasks where massive, human-labeled datasets are readily available for training. However,

collecting and annotating large-scale datasets for many different tasks is costly, error-prone, time-

consuming, and in many cases entirely infeasible. Moreover, the resulting representations are biased

by human decision-making and are specialized to a specific task.

In contrast, humans and other intelligent organisms require little to no supervision to learn to

interact with their environment. Yet, the compact representations they learn generalize to a variety

of tasks, and they can easily integrate observations from a variety of senses such as touch, vision,

and sound. It is thus desirable to build models that learn rich neural scene representations only

from observations of scenes, without human-labeled datasets.

In this work, we will discuss models that perform such self-supervised learning of neural scene

representations, by virtue of being generative models. Generative models are DNNs that are capable

of generating output in the same domain as the observations—such as images. They can be trained

given only a dataset of raw observations: the model is fed all but one observations and trained to

predict the held-out observation. If a generative model succeeds at generating accurate observations

of an environment unseen at training time, this is strong evidence that it has learned a neural scene

representation that captures the latent structure of the data.

1.1.1 Formulation

The models we will discuss in this work will consist of three parts: An observation encoder, a neural

scene representation, and a neural renderer. Please see Figure 1.1 for a visualization of the algorithm.

Training data. We will often collect a dataset C of observations of a single scene, and then

consider a meta-dataset containing several such datasets in Chapter 3. Presently, the complexity of

3D scenes that are tractable in this framework is limited. In this work, we will consider 3D scenes

that range in complexity from single objects to simple, synthetic room environments. Generally, we

assume visual observations, where each observation is a tuple (I,E,K) of an image I ∈ R
H×W×3

along with its respective extrinsic E =
[
R|t

]
∈ R

3×4 and intrinsic K ∈ R
3×3 camera matrices [12].

The dataset C with N observations is thus of the form:

C = {(Ii,Ei,Ki)}
N
i=1 (1.1)

In this work, we assume that camera extrinsic and intrinsic parameters are available. For real

captures, these can be obtained using sparse bundle adjustment [13].
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Figure 1.1: Visualization of proposed self-supervised scene representation learning framework. At
training time (continuous and dotted lines), we infer a neural scene representation N from a set
of images Ii and their camera parameters Ei and Ki. Using a differentiable renderer render, we
then re-render images in the dataset Îi, allowing us to enforce a 2D re-rendering loss L and train
the full model end-to-end using only 2D posed images. At test time (continuous lines only), we may
render arbitrary camera perspectives (see Chapter 2 and Chapter 3) or leverage inferred neural scene
representations N for other downstream tasks, such as semantic segmentation (see Chapter 4).

Neural Scene Representation. We first formalize the neural scene representation itself. In this

work, we investigate distributed representations [10], i.e., representations learned as activations of

neural networks in the process of optimization via backpropagation [14]. We thus formalize a neural

scene representation N simply as a k-dimensional vector of real numbers, N ∈ R
k. We note that the

word “neural” in this context does not imply any connections to the nervous system, but is rather

intended to indicate that these representations are learned by neural networks.

Observation encoder. The observation encoder is an algorithm that maps a set ofM observations

to a representation N of the underlying scene. In its most general form, it is described by the

function:

infer : {RH×W×3 × R
3×4 × R

3×3}M 7→ R
k, infer({(Ii,Ei,Ki)}

M
i=1) = N . (1.2)

Neural Renderer. The neural renderer is an algorithm that maps a neural scene representation

N as well as intrinsic and extrinsic camera parameters to an estimate of the respective perspective

image Î:

render : Rk × R
3×4 × R

3×3 7→ R
H×W×3, render(N ,E,K) = Î. (1.3)

Re-Rendering Loss. Finally, these three building blocks allow us to “close the loop” and obtain

a training signal as the error L defined between a ground-truth image observation in our dataset, I,

and its estimate Î = render(N ,E,K)

L(Î, I) = L(render(N ,E,K), I) (1.4)
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1.1.2 Example Scene Representation Learner

A simple example of a scene representation learner is a classic convolutional auto-encoder, extended

by control over the target camera pose, as previously proposed by Tatarchenko et al. [4]. The

observation encoder is implemented as a convolutional encoder that ingests a single image and out-

puts a latent vector z ∈ R
4096, the neural scene representation. The inferred latent vector is then

concatenated with a neural representation inferred from the extrinsic camera parameters E of the

perspective we aim to render. Finally, this vector is decoded into an image via a convolutional

decoder with transpose convolutions. The rendering function can therefore be expressed as the con-

catenation of the neural scene representation with the camera parameter embedding and subsequent

decoding via the convolutional decoder.

We note that this model makes very limited assumptions on the structure of infer, render, and

the space of neural scene representations itself. This is because, as convolutional neural networks,

both the encoder and decoder may in principle parameterize any function of their inputs and outputs.

A core question of this work is the investigation whether such unconstrained scene representation

learners can successfully infer the 3D structure of the scene underlying the input observations, or

whether it is beneficial to equip the learner with additional assumptions about the training data.

1.1.3 The Role of Inductive Biases

An inductive bias is defined as the set of assumptions that a machine learning algorithm makes about

the data it encounters [15]. In this work, we will see that inductive biases on the 3D structure of

a scene are essential to scene representation learners. This becomes apparent when considering the

general formulation of render, and infer. For a given dataset C, there may exist several different

(potentially infinitely many) combinations of the functions render and infer, with a space of

neural scene representations that is only loosely constrained, that perfectly explain the training set.

However, the image formation process of cameras is well understood, and it is known that a model

that successfully renders observations of 3D-dimensional environments has to observe multi-view

and perspective geometry [12].

Yet, as a powerful universal function approximator, an unconstrained learner may overfit on

the training data, rote-memorizing observations instead of discovering fundamental structure of the

underlying environments. Optimization may also fall into local optima, where the generative model

has found a suboptimal heuristic to explain training data. In this work, we demonstrate that such

unconstrained models fail to generate observations with camera intrinsic and extrinsic parameters

unseen at training time.

To alleviate this, we propose models that incorporate inductive biases about multi-view and

perspective geometry. Formally, this is equivalent to making assumptions about the structure of

render, infer, and the space of neural scene representations itself.
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1.2 Related Work

Computer vision and artificial intelligence researchers have proposed a variety of scene representa-

tions towards accurate reconstruction of 3D environments and their properties. Here, we review

prior work.

Model-based reconstruction. Classic reconstruction approaches such as structure-from-motion

exploit multi-view geometry [12, 16] to build dense 3D point clouds [17–21], voxel grids [22], or

height-map based representations [23, 24] of the imaged environment. However, these approaches

are constrained by multi-view geometry only, and do not leverage learned priors over scene repre-

sentation parameters. As a result, they require densely sampled observations of a scene to infer its

3D structure. Furthermore, the features encoded in the final representations are hand-crafted by

experts, and are thus constrained in which information they may represent. This motivates scene

representation learning as a potential path towards reconstruction of scene properties from few ob-

servations, including such properties that may be difficult to model analytically, such as material

properties, affordance, or semantic information.

2D representation learning. Representation learning—the learning of feature representations

that generalize across tasks without labels, given only observations—is a long-standing challenge

in machine learning. A large body of recent work explores self-supervised representation learning

on images. Here, the weights of a convolutional neural network (CNN) are sought such that the

CNN extracts either a single or a per-pixel feature representation of the input image. The model

is trained for a surrogate objective in an unsupervised manner on a large dataset of images. Such

surrogate objectives may be 2D generative modeling [25–27], predicting representations of unseen

pixels given a set of context pixels [28, 29], enforcing of invariance of image class to data augmenta-

tion [30], predicting image rotation [31], predicting image color from grayscale [32, 33], wide-baseline

matching [34], predicting of or equivariance to ego-motion [35, 36], or predicting the spatial layout

of an image [37]. The resulting representations can then be leveraged in downstream tasks, such

as 2D bounding box detection, 2D image segmentation, or image classification, and have achieved

impressive results in these domains. However, the representations regressed by these models are

fundamentally 2D-structured, in that they regress either image- or pixel-wise representations. This

lack of 3D inductive bias makes these approaches incapable of reasoning about multi-view consis-

tency or scene parts occluded in the input image. Current 2D representation learning techniques

are therefore incapable of supporting 3D tasks.

Geometric deep learning. Geometric deep learning has explored various representations to infer

scene geometry from sparse observations. Discretization-based techniques leverage machine learn-

ing to parameterize classic computer graphics representations such as voxel grids [38–45], octree
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hierarchies [46–48], point clouds [49–51], multiplane images [52], patches [53], or meshes [44, 54–

56]. Methods based on function spaces continuously represent space as the decision boundary of a

learned binary classifier [57] or a continuous signed distance field [58–60]. While these techniques

are successful at modeling geometry, they often require 3D supervision, and it is unclear how to

efficiently infer and represent appearance and other scene properties. In this work, we explore neu-

ral scene representations that learn to infer appearance, geometry, and semantic information, given

only posed 2D images.

Deep-learning scene representations. The artificial intelligence community has long sought

to build models that reproduce human reasoning about 3D environments, given only 2D image

supervision, and has proposed a variety of feature-based representations to this end. Following

seminal work by Eslami et al. [11], we use the term “neural scene representation” to refer to such

feature-based scene representations where features are learned by a neural network, but note that

the word “neural” in this context does not indicate a relationship to the nervous system. Latent

codes of autoencoders may be interpreted as a feature representation of the underlying scene. Such

models first leverage a convolutional image encoder to regress a latent code. Novel views may then be

rendered by concatenating target pose and latent code [4] or performing view transformations directly

in the latent space [5], and decoding the resulting representation using a convolutional decoder.

Generative Query Networks [11, 61] aggregate latent codes from several image observations into a

single scene representation via averaging, and add a probabilistic reasoning framework that models

uncertainty due to incomplete observations. Such convolutional encoder-decoder based models,

however, are not equipped with explicit knowledge of the 3D structure of the underlying scenes,

or the multi-view and projective geometry governing the image formation process, and are instead

expected to discover 3D structure from data. Graphs may be leveraged for scene representation,

by attaching a 3D coordinate as well as a learned feature to a graph node and leveraging graph

neural networks for processing [62]. While this approach equips the representation with a notion

of locality, 3D structure remains coarse, and encoder and decoder remain oblivious to the image

formation model. Compositional and repetitive structure may be modeled by representing scenes as

programs [63] that are inferred from images by a convolutional encoder and a sequence-to-sequence

Long short-term memory [64]. This approach, however, reasons about assemblies of monolithic, pre-

defined objects, and does not learn feature representations of objects, their shape or appearance.

In this work, we investigate models that learn feature representations of scene properties such as

geometry, shape, and semantic class given only 2D posed images. We show that inductive biases

on multi-view geometry and perspective image formation are critical for correctly inferring the

3D structure of the underlying scene, and investigate approaches to equipping learners with such

inductive biases.
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Neural image synthesis. Deep models for 2D image and video synthesis have recently shown

promising results in generating photorealistic images. Some of these approaches are based on (vari-

ational) auto-encoders [65, 66], generative flows [67, 68], or autoregressive per-pixel models [69, 70].

In particular, generative adversarial networks [71–75] and their conditional variants [6, 76, 77] have

recently achieved photo-realistic single-image generation. Compositional Pattern Producing Net-

works [78, 79] learn multi-layer perceptrons that directly map 2D image coordinates to color. Some

approaches build on explicit spatial or perspective transformations in the networks [80–83]. Re-

cently, following the spirit of “vision as inverse graphics” [84, 85], deep neural networks have been

applied to the task of inverting graphics engines [86–90]. However, these 2D generative models only

learn to parameterize the manifold of 2D natural images, and struggle to generate images that are

multi-view consistent, since the underlying 3D scene structure cannot be exploited.

1.3 Research Questions and Contributions

We formulate the research questions and contributions as follows:

Research Question 1: How can we enable artificial intelligence models to recover 3D structure

of environments when supervised only with posed images?

In Chapter 2, we demonstrate that neural network models without an inductive bias on 3D

structure fail to infer the true 3D structure of an environment given only posed 2D images. We

propose to combine a 3D-structured latent space, a voxelgrid of features—DeepVoxels—with an

image formation model that explicitly models occlusions. We demonstrate that DeepVoxels suc-

ceeds in inferring 3D appearance and geometry given only 2D observations of an environment, and

demonstrate applications in novel view synthesis.

While the proposed 3D-structured latent space successfully enables inference of 3D structure,

voxel grids do not scale to large scenes due to a cubical growth in memory requirements with spatial

resolution. They further require discretization of 3D space, and thus do not naturally admit the

representation of smooth surfaces and coherent scene parts. Most importantly, it has proven difficult

to learn priors for few-shot reconstruction over scenes represented by voxelgrids. This motivates the

following research question:

Research Question 2: Can we find a representation whose memory does not scale with spatial

resolution, and that allows the learning of priors over its parameters, enabling reconstruction from

few observations?

In Chapter 3, we propose Scene Representation Networks (SRNs). Instead of a voxelgrid of

features, we propose to model a 3D environment as a function that maps world coordinates to a

feature representation of local scene properties. This function is directly approximated as a fully

connected neural network, effectively encoding the scene in the parameters of that network. We
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demonstrate the learning of a distribution over the weights of such SRNs, thereby enabling full 3D

reconstruction of shape and geometry given only a single posed image.

Research Question 3: Can we leverage the features learned by the proposed SRNs to learn down-

stream tasks from limited supervision?

The goal of representation learning is the learning of representations that may support a variety

of applications. In Chapter 4, we leverage the prior over 3D environments learned by SRNs to

perform dense 3D semantic segmentation of objects. We demonstrate that this is feasible in a semi-

supervised framework, given only extremely limited per-pixel semantic labels. At test time, this

subsequently enables joint 3D reconstruction of objects and dense 3D semantic segmentation, given

only a single posed image.



Chapter 2

DeepVoxels

Recent years have seen significant progress in applying generative machine learning methods to the

creation of synthetic imagery. Many deep neural networks, for example based on (variational) au-

toencoders, are able to inpaint, refine, or even generate complete images from scratch [65, 66]. A

very prominent direction is generative adversarial networks [71] which achieve impressive results

for image generation, even at high resolutions [91] or conditional generative tasks [6]. These de-

velopments allow us to perform highly-realistic image synthesis in a variety of settings; e.g., purely

generative, conditional, etc.

However, while each generated image is of high quality, a major challenge is to generate a series of

coherent views of the same environment. Such consistent view generation would require the network

to have a neural representation that fundamentally understands the 3D layout of the scene; e.g., how

would the same chair look from a different viewpoint? Unfortunately, this is challenging to learn for

existing generative neural network architectures that are based on a series of 2D convolution kernels.

Here, spatial layout and transformations of a real, 3D environment would require a tedious learning

process which maps 3D operations into 2D convolution kernels [92]. In addition, the generator

network in these approaches is commonly based on a U-Net architecture with skip connections [93].

Although skip connections enable efficient propagation of low-level features, the learned 2D-to-2D

mappings typically struggle to generalize to large 3D transformations, due to the fact that the skip

connections bypass higher-level reasoning.

To tackle similar challenges in the context of learning-based 3D reconstruction and semantic

scene understanding, the field of 3D deep learning has seen large and rapid progress over the last

few years. Existing approaches are able to predict surface geometry with high accuracy. Many of

these techniques are based on explicit 3D representations in the form of occupancy grids [42, 94],

signed distance fields [46], point clouds [49, 83], or meshes [54]. While these approaches handle

the geometric reconstruction task well, they are not directly applicable to the synthesis of realistic

imagery, since it is unclear how to represent color information at a sufficiently high resolution.

9
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Figure 2.1: During training, we learn a persistent DeepVoxels representation that encodes the view-
dependent appearance of a 3D scene from a dataset of posed multi-view images (top). At test time,
DeepVoxels enable novel view synthesis (bottom).

There also exists a large body of work on learning low-dimensional embeddings of images that can

be decoded to novel views [4, 5, 11, 95–97]. Some of these techniques make use of the object’s 3D

rotation by explicitly rotating the latent space feature vector [5, 97]. While such 3D techniques are

promising, they have thus far not been successful in achieving sufficiently high fidelity for the task

of photorealistic image synthesis.

In this chapter, we aim at overcoming the fundamental limitations of existing 2D generative

models, demonstrating that a 3D inductive bias is necessary in order to enable scene representation

learners to discover 3D shape and appearance of an environment conditioned only on posed images.

To this end, we propose DeepVoxels, a learned representation that encodes the view-dependent ap-

pearance of a 3D scene without having to explicitly model its geometry. DeepVoxels leverages a

Cartesian 3D grid of learned features as its core neural scene representation, reflecting the 3D struc-

ture of the environments of interest. This allows condensing posed input images of an environment

into a persistent latent representation without explicitly having to model its geometry (see Fig. 2.1)

We further combine insights from 3D geometric computer vision to equip infer and render with

an inductive bias of 3D structure. Specifically, we implement infer as an iterative algorithm, where

each iteration extracts 2D features, lifts them to 3D via an unprojection operation, and finally up-

dates the neural scene representation with these 3D lifted features. We implement render as a
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differentiable projection operation with a learned z-buffer, forcing the learner to explicitly reason

about occlusions. Finally, we leverage advances in image-to-image mappings by formulating an ad-

versarial loss function. We apply DeepVoxels to the problem of novel view synthesis, demonstrating

high-quality results for a variety of challenging scenes.

In summary, our approach makes the following technical contributions:

• A novel neural scene representation for image synthesis that makes use of the underlying 3D

scene information.

• Explicit occlusion reasoning based on learned soft visibility that leads to higher-quality results

and better generalization to novel viewpoints.

• Differentiable image formation to enforce perspective and multi-view geometry in a principled

and interpretable manner during training.

• Training without requiring 3D supervision.

Scope In this chapter, we present first steps towards 3D-structured neural scene representations.

To this end, we limit the scope of our investigation to allow an in-depth discussion of the challenges

fundamental to this approach. We assume Lambertian scenes, without specular highlights or other

view-dependent effects. While the proposed approach can deal with light specularities, these are

not modeled explicitly. Classical approaches will achieve impressive results on the presented scenes.

However, these approaches rely on the explicit reconstruction of geometry. As we will demonstrate in

the following chapter, neural scene representation are essential to develop generative models that can

generalize across scenes to solve reconstruction problems where only few observations are available.

We thus compare to such baselines exclusively.

2.1 Method

The core of our approach is a novel 3D-structured scene representation called DeepVoxels. Deep-

Voxels is a viewpoint-invariant, persistent and uniform 3D voxel grid of features. The underlying

3D grid enforces spatial structure on the learned per-voxel code vectors. The final output image is

formed based on a 2D network that receives the perspective re-sampled version of this 3D volume,

i.e., the canonical view volume of the target view, as input. The 3D part of our approach takes care

of spatial reasoning, while the 2D part enables fine-scale feature synthesis. In the following, we first

introduce the training corpus and then present our end-to-end approach for finding the scene-specific

DeepVoxels representation from a set of multi-view images without explicit 3D supervision.
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Figure 2.2: Overview of all model components. At the heart of our encoder-decoder based ar-
chitecture is a novel viewpoint-invariant and persistent 3D volumetric scene representation called
DeepVoxels that enforces spatial structure on the learned per-voxel code vectors.

2.1.1 Dataset

We assume a scene-specific dataset C = {(Ii,Ei,Ki)}
M
i=1 as discussed in Section 1.1.1, with images

I along with their respective extrinsic E and intrinsic K camera matrices [12]. In the following, we

will refer to a single tuple (I,E,K) as a view. In each iteration of the optimizer, we will sample

from this dataset three times. First, we sample two target views T 0 and T 1 from the whole dataset

at random. For each pair of target views T 0, T 1 we then randomly select a single source view S

from the top-5 nearest neighbors in terms of view direction angle to target view T 0. This sampling

heuristic makes it highly likely that points in the source view are visible in the target view T 0.

While not essential to training, this ensures meaningful gradient flow for every optimization step,

while encouraging multi-view consistency to the random target view T 1. We sample the training

corpus C dynamically during training.

2.1.2 Architecture Overview

Our network architecture is summarized in Fig. 2.2. On a high level, it can be seen as an encoder-

decoder based architecture with the persistent 3D DeepVoxels representation as its latent space.

During training, we feed a source view S to the encoder and try to predict the target view T . We

first extract a set of 2D feature maps from the source view using a 2D feature extraction network.

To learn a view-independent 3D feature representation, we explicitly lift image features to 3D based

on a differentiable lifting layer. The lifted 3D feature volume is fused with our persistent DeepVoxels

scene representation using a gated recurrent network architecture. Specifically, the persistent 3D

feature volume is the hidden state of a gated recurrent unit (GRU) [98]. After feature fusion, the

volume is processed by a 3D fully convolutional network. The volume is then mapped to the camera
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Figure 2.3: Illustration of the occlusion-aware projection operation. The feature volume (represented
by feature grid) is first resampled into the canonical view volume via a projection transformation and
trilinear interpolation. The occlusion network then predicts per-pixel softmax weights along each
depth ray. The canonical view volume is then collapsed along the depth dimension via a softmax-
weighted sum of voxels to yield the final, occlusion-aware feature map. The per-voxel visibility
weights can be used to compute a depth map.

coordinate systems of the two target views via a differentiable reprojection layer, resulting in the

canonical view volume. A dedicated, structured occlusion network operates on the canonical view

volume to reason about voxel visibility and flattens the view volume to a 2D view feature map (see

Fig. 2.3). Finally, a learned 2D rendering network forms the two final output images. Our network

is trained end-to-end, without the need of supervision in the 3D domain, by a 2D re-rendering loss

that enforces that the predictions match the target views. In the following, we provide more details.

Camera Model We follow a perspective pinhole camera model that is fully specified by its ex-

trinsic E =
[
R|t

]
∈ R

3×4 and intrinsic K ∈ R
3×3 camera matrices [12]. Here, R ∈ R

3×3 is the

global camera rotation and t ∈ R
3 its translation. Assume we are given a position x ∈ R

3 in 3D

coordinates, then the mapping from world space to the canonical camera volume is given as:

u =







u

v

d







= K(Rx+ t) . (2.1)

Here, u and v specify the position of the voxel center on the screen and d is its depth from the

camera. Given a pixel and its depth, we can invert this mapping to compute the corresponding 3D

point x = RT (K−1u− t).

Feature Extraction We extract 2D feature maps from the source view based on a fully convolu-

tional feature extraction network. The image is first downsampled by a series of stride-2 convolutions

until a resolution of 64× 64 is reached. A 2D U-Net architecture [93] then extracts a 64× 64 feature

map that is the input to the subsequent volume lifting.

Lifting 2D Features to 3D Observations The lifting layer lifts 2D features into a temporary 3D

volume, representing a single 3D observation, which is then integrated into the persistent DeepVoxels
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representation. We position the 3D feature volume in world space such that its center roughly aligns

with the scene’s center of gravity, which can be obtained cheaply from the keypoint point cloud

obtained from sparse bundle adjustment. The spatial extent is set such that the complete scene is

inside the volume. We try to bound the scene as tightly as possible to not lose spatial resolution.

Lifting is implemented by a gathering operation. For each voxel, the world space position of its

center is projected to the source view’s image space following Eq. 2.1. We extract a feature vector

from the feature map using bilinear sampling and store the result in the code vector associated with

the voxel. Note, our approach is based only on a set of registered multi-view images and we do

not have access to the scene geometry or depth maps, rather our approach learns automatically to

resolve the depth ambiguity based on a gated recurrent network in 3D.

Integrating Lifted Features into DeepVoxels Lifted observations are integrated into the Deep-

Voxels representation via an integration network that is based on gated recurrent units (GRUs) [98].

In contrast to the standard application of GRUs, the integration network operates on the same

volume across the full training procedure, i.e., the hidden state is persistent across all training steps

and never reset, leading to a geometrically consistent representation of the whole training corpus.

We use a uniform volumetric grid of size w× h× d voxels, where each voxel has f feature channels,

i.e., the stored code vector has size f . We employ one gated recurrent unit for each voxel, such

that at each time step, all the features in a voxel have to be updated jointly. The goal of the gated

recurrent units is to incrementally fuse the lifted features and the hidden state during training, such

that the best persistent 3D volumetric feature representation is discovered. The gated recurrent

units implement the mapping

Zt = σ(WzXt +UzHt−1 +Bz) , (2.2)

Rt = σ(WrXt +UrHt−1 +Br) , (2.3)

St = ReLU(WsXt +Us(Rt ◦Ht−1) +Bs) , (2.4)

Ht = (1− Zt) ◦Ht−1 + Zt ◦ St . (2.5)

Here, Xt is the lifted 3D feature volume of the current timestep t, the W• and U• are trainable 3D

convolution weights, and the B• are trainable tensors of biases. We follow Cho et al. [98] and employ

a sigmoid activation σ to compute the response of the tensor of update gates Zt and reset gates Rt.

Based on the previous hidden state Ht−1, the per-voxel reset values Rt, and the lifted 3D feature

volume Xt, the tensor of new feature proposals St for the current time step t is computed. Us and

Ws are single 3D convolutional layers. The new hidden state Ht, the DeepVoxels representation

for the current time step, is computed as a per-voxel linear combination of the old state Ht−1 and

the new DeepVoxel proposal St. The GRU performs one update step per lifted observation. We

note that generally, GRUs are leveraged as sequential processes, and their weights are therefore
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usually optimized via backpropagation in time to optimally incorporate information obtained over a

sequence of several timesteps. While this is also, in principle, possible in the proposed framework, in

this work, we do not perform backpropagation in time. This means that the weights of the GRU are

optimized to integrate new observations optimally for only the current iteration, and no information

flows backwards in time to previous integration steps. In this mode of operation, the GRU can be

interpreted as a learned update rule for the DeepVoxels that is conditioned only on the information

of the current update step. Finally, we apply a 3D inpainting U-Net that learns to fill holes in this

feature representation. At test time, only the optimally learned persistent 3D volumetric features,

the DeepVoxels, are used to form the image corresponding to a novel target view. The 2D feature

extraction, lifting layer and GRU gates are discarded and are not required for inference, see Fig. 2.2.

Projection Layer The projection layer implements the inverse of the lifting layer, i.e., it maps the

3D code vectors to the canonical coordinate system of the target view, see Fig. 2.3 (left). Projection

is also implemented based on a gathering operation. For each voxel of the canonical view volume,

its corresponding position in the persistent world space voxel grid is computed. An interpolated

code vector is then extracted via a trilinear interpolation and stored in the feature channels of the

canonical view volume.

Occlusion Module Occlusion reasoning is essential for correct image formation and generalization

to novel viewpoints. To this end, we propose a dedicated occlusion network that computes soft

visibility for each voxel. Each pixel in the target view is represented by one column of voxels in

the canonical view volume, see Fig. 2.3 (left). First, this column is concatenated with a feature

column encoding the distance of each voxel to the camera, similar as in [99]. This allows the

occlusion network to reason about voxel order. The feature vector of each voxel in this canonical

view volume is then compressed to a low-dimensional feature vector of dimension 4 by a single 3D

convolutional layer. This compressed volume is input to a 3D U-Net for occlusion reasoning. For

each ray, represented by a single-pixel column, this network predicts a scalar per-voxel visibility

weight based on a softmax activation, see Fig. 2.3 (middle). The canonical view volume is then

flattened along the depth dimension with a weighted average, using the predicted visibility values.

The softmax weights can further be used to compute a depth map, which provides insight into the

occlusion reasoning of the network, see Fig. 2.3 (right).

Rendering and Loss The rendering network is a mirrored version of the feature extraction net-

work with higher capacity. A 2D U-Net architecture takes as input the flattened canonical view

volume from the occlusion network and provides reasoning across the full image, before a number

of transposed convolutions directly regress the pixel values of the novel view. We train our persis-

tent DeepVoxels representation based on a combined ℓ1-loss and adversarial cross entropy loss [71].

We found that an adversarial loss accelerates the generation of high-frequency detail earlier on in
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Ground Truth Worrall et al. Ours Ours - Test ViewsPix2Pix

Figure 2.4: Left: Comparison of the best three performing models to ground truth. From Left to
right: Ground truth, Worrall et al. [5], Isola et al. [6] (Pix2Pix), and ours. Our outputs are closest
to the ground truth, performing well even in challenging cases such as the strongly foreshortened
letters on the cube or the high-frequency detail of the vase. Right: Other samples of novel views
generated by our model.

training. Our adversarial discriminator is a fully convolutional patch-based discriminator [100]. We

solve the resulting minimax optimization problem using ADAM [101].

2.2 Analysis

In this section, we demonstrate that DeepVoxels is a rich and semantically meaningful 3D scene

representation that allows high-quality re-rendering from novel views. First, we present qualitative

and quantitative results on synthetic renderings of high-quality 3D scans of real-world objects, and

compare the performance to strong machine-learning baselines with increasing reliance on geometri-

cally structured latent spaces. Next, we demonstrate that DeepVoxels can also be used to generate

novel views on a variety of real captures, even if these scenes may violate the Lambertian assump-

tion. Finally, we demonstrate quantitative and qualitative benefits of explicitly reasoning about

voxel visibility via the occlusion module, as well as improved model interpretability. Please see the

supplement for further studies on the sensitivity to the number of training images, the size of the

voxel volume, as well as noisy camera poses.

Dataset and Metrics We evaluate model performance on synthetic data obtained from rendering

4 high-quality 3D scans (see Fig. 2.4). We center each scan at the origin and scale it to lie within
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Vase Pedestal Chair Cube Mean
PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM

Near. Neighb. 23.26 / 0.92 21.49 / 0.87 20.69 / 0.94 18.32 / 0.83 20.94 / 0.89
TCO [4] 22.28 / 0.91 23.25 / 0.89 20.22 / 0.95 19.12 / 0.84 21.22 / 0.90
WRL [5] 23.41 / 0.92 22.70 / 0.89 19.52 / 0.94 19.23 / 0.85 21.22 / 0.90
Pix2Pix [6] 26.36 / 0.95 25.41 / 0.91 23.04 / 0.96 19.69 / 0.86 23.63 / 0.92
Ours 27.99 / 0.96 32.35 / 0.97 33.45 / 0.99 28.42 / 0.97 30.55 / 0.97

Table 2.1: Quantitative comparison to four baselines. Our approach obtains the best results in terms
of PSNR and SSIM on all objects.

the unit cube. For the training set, we render the object from 479 poses uniformly distributed on

the northern hemisphere. For the test set, we render 1000 views on an Archimedean spiral on the

northern hemisphere. All images are rendered in a resolution of 1024× 1024 and then resized using

area averaging to 512×512 to minimize aliasing. We evaluate reconstruction error in terms of PSNR

and SSIM [102].

Implementation All models are implemented in PyTorch [103]. Unless specified otherwise, we

use a cube volume with 323 voxels. We average the ℓ1 loss over all pixels in the image. The ℓ1

and adversarial loss are weighted 200 : 1. Models are trained until convergence using ADAM with a

learning rate of 4 · 10−4. One model is trained per scene. The proposed architecture has 170 million

parameters. At test time, rendering a single frame takes 71ms.

Baselines We compare to three strong baselines with increasing reliance on geometry-aware latent

spaces. The first baseline is a Pix2Pix architecture [6] that receives as input the per-pixel view

direction, i.e., the normalized, world-space vector from camera origin to each pixel, and is trained to

translate these images into the corresponding color image. This baseline is representative of recent

achievements in 2D image-to-image translation. The second baseline is a deep autoencoder that

receives as input one of the top-5 nearest neighbors of the target view, and the pose of both the

target and the input view are concatenated in the deep latent space, as proposed by Tatarchenko

et al. [4]. The inputs of this model at training time are thus identical to those of our model. The

third baseline learns an interpretable, rotation-equivariant latent space via the method proposed

in [5, 104] and used previously in [97], by being fed one of the top-5 nearest neighbor views and

then rotating the latent embedding with the rotation matrix that transforms the input to the output

pose. At test time, the previous two baselines receive the top-1 nearest neighbor to supply the model

with the most relevant information. We approximately match the number of parameters of each

network, with all baselines having equally or slightly more parameters than our model. We train

all baselines to convergence with the same loss function. For the exact baseline architectures and

number of parameters, please see the supplement.
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Object-specific Novel View Synthesis We train our network and all baselines on synthetic

renders of four high-quality 3D scans. Table 2.1 compares PSNR and SSIM of the proposed archi-

tecture and the baselines. The best-performing baseline is Pix2Pix [6]. This is surprising, since no

geometrical constraints are enforced, as opposed to the approach by Worrall et al. [5]. The proposed

architecture with strongly structured latent space outperforms all baselines by a wide margin of an

average 7dB. Fig. 2.4 shows a qualitative comparison as well as further novel views sampled from

the proposed model. The proposed model displays robust 3D reasoning that does not break down

even in challenging cases. Notably, other models have a tendency to “snap” onto views seen in the

training set, while the proposed model smoothly follows the test trajectory. Please see the supple-

mental video for a demonstration of this behavior. We hypothesize that this improved generalization

to unseen views is due to the explicit multi-view constraints enforced by the proposed latent space.

The baseline models are not explicitly enforcing projective and epipolar geometry, which may allow

them to parameterize latent spaces that are not properly representing the low-dimensional manifold

of rotations. Although the resolution of the proposed voxel grid is 16 times smaller than the image

resolution, our model succeeds in capturing fine detail much smaller than the size of a single voxel,

such as the letters on the sides of the cube or the detail on the vase. This may be due to the use

of trilinear interpolation in the lifting and projection steps, which allow for a fine-grained represen-

tation to be learned. Please see the video for full sequences, and the supplemental material for two

additional synthetic scenes.

Voxel Embedding vs. Rotation-Equivariant Embedding As reflected in Tab. 2.1, we outper-

form [5] by a wide margin both qualitatively and quantitatively. The proposed model is constrained

through multi-view geometry, while [5] has more degrees of freedom. Lacking occlusion reasoning,

depth maps are not made explicit. The model may thus parameterize latent spaces that do not

respect multi-view geometry. This increases the risk of overfitting, which we observe empirically, as

the baseline snaps to nearest neighbors seen during training. While the proposed voxel embedding

is memory hungry, it is very parameter efficient. The use of 3D convolutions means that the param-

eter count is independent of the voxel grid size. Giving up spatial structure means Worrell et al. [5]

abandon convolutions and use fully connected layers. However, to achieve the same latent space

size of 323 × 64 features would necessitate more than 4.4 · 1012 parameters between just the fully

connected layers before and after the feature transformation layer, which is infeasible. In contrast,

the proposed 3D inpainting network only has 1.7 · 107 parameters, five orders of magnitude less. To

address memory inefficiency, the dense grid may be replaced by a sparse alternative in the future.

Occlusion Reasoning and Interpretability An essential part of the rendering pipeline is the

depth test. Similarly, the rendering network ought to be able to reason about occlusions when

regressing the output view. A naive approach might flatten the depth dimension of the canonical

camera volume and subsequently reduce the number of features using a series of 2D convolutions.
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Ground Truth With Occlusion Net. No Occlusion Net.

Figure 2.5: The occlusion module is critical to model performance. It boosts performance from
23.26dB to 28.42dB (cube), and from 30.02dB to 32.35dB (pedestal). Left: ground truth view and
depth map. Center: view generated with the occlusion module and learned depth map (64 × 64
pixels). Note that the object background is unconstrained in the depth map and may differ from
ground truth. Right: without the occlusion module, the occluded, blue side of the cube (see Fig. 2.4)
“shines through”, and severe artifacts appear (see inset). In addition to decreasing parameter
count and boosting performance, the occlusion module generates depth maps fully unsupervised,
demonstrating 3D reasoning.

This leads to a drastic increase in the number of network parameters. At training time, this further

allows the network to combine features from several depths equally to regress on pixel colors in

the target view. At inference time, this results in severe artifacts and occluded parts of the object

“shining through” (see Fig. 2.5). Our occlusion network forces learning to use a softmax-weighted

sum of voxels along each ray, which penalizes combining voxels from several depths. As a result,

novel views generated by the network with the occlusion module perform much more favorably at

test time, as demonstrated in Fig. 2.5, than networks without the occlusion module. The depth map

generated by the occlusion model further demonstrates that the proposed model indeed learns the

3D structure of the scene. We note that the depth map is learned in a fully unsupervised manner

and arises out of the pure necessity of picking the most relevant voxel. Please see the supplement

for more examples of learned depth maps.

Novel View Synthesis for Real Captures We train our network on real captures obtained

with a DSLR camera. Camera poses, intrinsic camera parameters and keypoint point clouds are

obtained via sparse bundle adjustment. The voxel grid origin is set to the respective point cloud’s

center of gravity. Voxel grid resolution is set to 64. Each voxel stores 8 feature channels. Test

trajectories are obtained by linearly interpolating two randomly chosen training poses. Scenes depict
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Figure 2.6: Novel views of real captures.

a drinking fountain, two busts, a globe, and a bag of coffee. See Fig. 2.6 for example model outputs.

The drinking fountain and the globe have noticeable specularities, which are handled gracefully.

While the coffee bag is generally represented faithfully, inconsistencies appear on its highly specular

surface. Generally, results are of high quality, and only details that are significantly smaller than

a single voxel, such as the tiles in the sink of the fountain, show artifacts. Please refer to https:

//vsitzmann.github.io/deepvoxels for detailed results as well as a nearest-neighbor baseline.

2.3 Limitations

Although we have demonstrated high-quality view synthesis results for a variety of challenging

scenes, the proposed approach has a number of limitations. By construction, the employed 3D

volume is memory inefficient, thus we have to trade local resolution for spatial extent. The proposed

model can be trained with a voxel resolution of 643 with 8 feature channels, filling a GPU with

12GB of memory. Please note, compelling results can already be achieved with quite small volume

resolutions. Synthesizing images from viewpoints that are significantly different from the training

set, i.e., extrapolation to unseen camera parameters, is challenging for all learning-based approaches.

While this is also true for DeepVoxels and detail is lost when viewing scenes from poses far away

from training poses, DeepVoxels generally deteriorates gracefully and the 3D structure of the scene

is preserved. Please refer to the appendix for failure cases as well as examples of pose extrapolation.

2.4 Conclusion

In this chapter, we have proposed a novel 3D-structure-aware neural scene representation, DeepVox-

els, that encodes the view-dependent appearance of a 3D scene using only supervision through posed

images. We have demonstrated that inductive biases based in multi-view and perspective geometry

are necessary to achieve this feat, significantly outperforming approaches without such inductive

biases. Our approach is a first step towards 3D-structured neural scene representations and the goal

of overcoming the fundamental limitations of existing 2D generative models by introducing native

3D operations into the network.

https://vsitzmann.github.io/deepvoxels
https://vsitzmann.github.io/deepvoxels


Chapter 3

Scene Representation Networks

In the previous chapter, we proposed DeepVoxels, a 3D-structured neural scene representation in

the form of a voxelgrid of features. However, the DeepVoxels representation is discrete, limiting

achievable spatial resolution, and does not enable the learning of a prior over the parameters of

the voxelgrid. As a result, DeepVoxels does not allow the reconstruction of scenes when only few

observations are available.

In this chapter, we introduce Scene Representation Networks (SRNs), a continuous neural scene

representation, along with a differentiable rendering algorithm, that model both 3D scene geometry

and appearance, enforce 3D structure in a multi-view consistent manner, and naturally allow gener-

alization of shape and appearance priors across scenes. The key idea of SRNs is to represent a scene

implicitly as a continuous, differentiable function that maps a 3D world coordinate to a feature-based

representation of the scene properties at that coordinate. This allows SRNs to naturally interface

with established techniques of multi-view and projective geometry while operating at high spatial

resolution in a memory-efficient manner. Similar to DeepVoxels, infer and render are factorized

into sub-routines that respect the 3D structure of the underlying environment. Specifically, render

is implemented as a differentiable ray-marching algorithm that first recovers the intersection of a

camera ray with scene geometry and subsequently renders the color of only this intersection point,

thereby respecting occlusions. As in Chapter 2, infer is implemented as an iterative algorithm.

However, different from DeepVoxels, infer is implicitly modeled as the backpropagation of the loss

through the render algorithm. As DeepVoxels before, SRNs can be trained end-to-end, supervised

only by a set of posed 2D images of a scene. SRNs generate high-quality images without any 2D

convolutions, exclusively operating on individual pixels, which enables image generation at arbitrary

resolutions. They generalize naturally to camera transformations and intrinsic parameters that were

completely unseen at training time. For instance, SRNs that have only ever seen objects from a

constant distance are capable of rendering close-ups of said objects flawlessly. We evaluate SRNs on

a variety of challenging 3D computer vision problems, including novel view synthesis, few-shot scene

21
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Figure 3.1: Overview: at the heart of SRNs lies a continuous, 3D-aware neural scene representa-
tion, Φ, which represents a scene as a function that maps (x, y, z) world coordinates to a feature
representation of the scene at those coordinates (see Sec. 3.1.1). A neural renderer Θ, consisting of
a learned ray marcher and a pixel generator, can render the scene from arbitrary novel view points
(see Sec. 3.1.2).

reconstruction, joint shape and appearance interpolation, and unsupervised discovery of a non-rigid

face model.

To summarize, our approach makes the following key contributions:

• A continuous, 3D-structure-aware neural scene representation and renderer, SRNs, that effi-

ciently encapsulate both scene geometry and appearance.

• End-to-end training of SRNs without explicit supervision in 3D space, purely from a set of

posed 2D images.

• We demonstrate novel view synthesis, shape and appearance interpolation, and few-shot re-

construction, as well as unsupervised discovery of a non-rigid face model, and significantly

outperform baselines from recent literature.

3.1 Formulation

Given a training set C = {(Ii,Ei,Ki)}
N
i=1 of N tuples of images Ii ∈ R

H×W×3 along with their

respective extrinsic Ei =
[
R|t

]
∈ R

3×4 and intrinsic Ki ∈ R
3×3 camera matrices [12], our goal

is to distill this dataset of observations into a neural scene representation Φ that strictly enforces

3D structure and allows to generalize shape and appearance priors across scenes. In addition, we

are interested in a rendering function Θ that allows us to render the scene represented by Φ from

arbitrary viewpoints. In the following, we first formalize Φ and Θ and then discuss a framework

for optimizing Φ, Θ for a single scene given only posed 2D images. Note that this approach does

not require information about scene geometry. Additionally, we show how to learn a family of scene

representations for an entire class of scenes, discovering powerful shape and appearance priors.
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3.1.1 Representing Scenes as Functions

Our key idea is to represent a scene as a function Φ that maps a spatial location x to a feature

representation v of learned scene properties at that spatial location:

Φ : R3 → R
n, x 7→ Φ(x) = v. (3.1)

The feature vector v may encode visual information such as surface color or reflectance, but it

may also encode higher-order information, such as the signed distance of x to the closest scene

surface. This continuous formulation can be interpreted as a generalization of discrete neural scene

representations. Voxel grids, for instance, discretize R
3 and store features in the resulting 3D

grid [1, 38, 94, 105–107]. Point clouds [83, 108, 109] may contain points at any position in R
3, but

only sparsely sample surface properties of a scene. In contrast, Φ densely models scene properties

and can in theory model arbitrary spatial resolutions, as it is continuous over R3 and can be sampled

with arbitrary resolution. In practice, we represent Φ as a multi-layer perceptron (MLP), and spatial

resolution is thus limited by the capacity of the MLP.

In contrast to recent work on representing scenes as unstructured or weakly structured feature

embeddings [4, 5, 11], Φ is explicitly aware of the 3D structure of scenes, as the input to Φ are

world coordinates (x, y, z) ∈ R
3. This allows interacting with Φ via the toolbox of multi-view and

perspective geometry that the physical world obeys, only using learning to approximate the unknown

properties of the scene itself. In Sec. 3.2, we show that this formulation leads to multi-view consistent

novel view synthesis, data-efficient training, and a significant gain in model interpretability.

3.1.2 Neural Rendering

Given a scene representation Φ, we introduce a neural rendering algorithm Θ, that maps a scene

representation Φ as well as the intrinsic K and extrinsic E camera parameters to an image I:

Θ : X × R
3×4 × R

3×3 → R
H×W×3, (Φ,E,K) 7→ Θ(Φ,E,K) = I, (3.2)

where X is the space of all functions Φ.

The key complication in rendering a scene represented by Φ is that geometry is represented

implicitly. The surface of a wooden table top, for instance, is defined by the subspace of R3 where Φ

undergoes a change from a feature vector representing free space to one representing wood. To render

a single pixel in the image observed by a virtual camera, we thus have to solve two sub-problems: (i)

finding the world coordinates of the intersections of the respective camera rays with scene geometry,

and (ii) mapping the feature vector v at that spatial coordinate to a color. We first propose a neural

ray marching algorithm with learned, adaptive step size to find ray intersections with scene geometry,

and subsequently discuss the pixel generator network that learns the feature-to-color mapping.
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Differentiable Ray Marching Algorithm

Algorithm 1 Differentiable Ray-Marching

1: function FindIntersection(Φ,K,E, (u, v))
2: d0 ← 0.05 ⊲ Near plane
3: (h0, c0) ← (0,0) ⊲ Initial state of LSTM
4: for i← 0 to max iter do

5: xi ← ru,v(di) ⊲ Calculate world coordinates
6: vi ← Φ(xi) ⊲ Extract feature vector
7: (δ,hi+1, ci+1) ← LSTM(v,hi, ci) ⊲ Predict steplength using ray marching LSTM
8: di+1 ← di + δ ⊲ Update d

9: return ru,v(dmax iter)

Intersection testing intuitively amounts to solving an optimization problem, where the point

along each camera ray is sought that minimizes the distance to the surface of the scene. To model

this problem, we parameterize the points along each ray, identified with the coordinates (u, v) of the

respective pixel, with their distance d to the camera (d > 0 represents points in front of the camera):

ru,v(d) = RT (K−1







u

v

d






− t), d > 0, (3.3)

with world coordinates ru,v(d) of a point along the ray with distance d to the camera, camera

intrinsics K, and camera rotation matrix R and translation vector t. For each ray, we aim to solve

argmin d

s.t. ru,v(d) ∈ Ω, d > 0 (3.4)

where we define the set of all points that lie on the surface of the scene as Ω.

Here, we take inspiration from the classic sphere tracing algorithm [110]. Sphere tracing belongs

to the class of ray marching algorithms, which solve Eq. 3.4 by starting at a distance dinit close to

the camera and stepping along the ray until scene geometry is intersected. Sphere tracing is defined

by a special choice of the step length: each step has a length equal to the signed distance to the

closest surface point of the scene. Since this distance is only 0 on the surface of the scene, the

algorithm takes non-zero steps until it has arrived at the surface, at which point no further steps

are taken. Extensions of this algorithm propose heuristics to modifying the step length to speed up

convergence [111]. We instead propose to learn the length of each step.

Specifically, we introduce a ray marching long short-term memory (RM-LSTM) [112], that maps

the feature vector Φ(xi) = vi at the current estimate of the ray intersection xi to the length of the

next ray marching step. The algorithm is formalized in Alg. 1.
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Given our current estimate di, we compute world coordinates xi = ru,v(di) via Eq. 3.3. We

then compute Φ(xi) to obtain a feature vector vi, which we expect to encode information about

nearby scene surfaces. We then compute the step length δ via the RM-LSTM as (δ,hi+1, ci+1) =

LSTM(vi,hi, ci), where h and c are the output and cell states, and increment di accordingly. We

iterate this process for a constant number of steps. This is critical, because a dynamic termination

criterion would have no guarantee for convergence in the beginning of the training, where both Φ

and the ray marching LSTM are initialized at random. The final step yields our estimate of the

world coordinates of the intersection of the ray with scene geometry. The z-coordinates of running

and final estimates of intersections in camera coordinates yield depth maps, which we denote as

di, which visualize every step of the ray marcher. This makes the ray marcher interpretable, as

failures in geometry estimation show as inconsistencies in the depth map. Note that depth maps are

differentiable with respect to all model parameters, but are not required for training Φ. Please see

the supplement for a contextualization of the proposed rendering approach with classical rendering

algorithms.

Pixel Generator Architecture

The pixel generator takes as input the 2D feature map sampled from Φ at world coordinates of ray-

surface intersections and maps it to an estimate of the observed image. As a generator architecture,

we choose a per-pixel MLP that maps a single feature vector v to a single RGB vector. This is

equivalent to a convolutional neural network (CNN) with only 1× 1 convolutions. Formulating the

generator without 2D convolutions has several benefits. First, the generator will always map the

same (x, y, z) coordinate to the same color value. Assuming that the ray-marching algorithm finds

the correct intersection, the rendering is thus trivially multi-view consistent. This is in contrast to

2D convolutions, where the value of a single pixel depends on a neighborhood of features in the input

feature map. When transforming the camera in 3D, e.g. by moving it closer to a surface, the 2D

neighborhood of a feature may change. As a result, 2D convolutions come with no guarantee on multi-

view consistency. With our per-pixel formulation, the rendering function Θ operates independently

on all pixels, allowing images to be generated with arbitrary resolutions and poses. On the flip side,

we cannot exploit recent architectural progress in CNNs, and a per-pixel formulation requires the

ray marching, the SRN and the pixel generator to operate on the same (potentially high) resolution,

requiring a significant memory budget. Please see the supplement for a discussion of this trade-off.

3.1.3 Generalizing Across Scenes

We now generalize SRN from learning to represent a single scene to learning shape and appearance

priors over several instances of a single class. Formally, we assume that we are given a set of M

instance datasets D = {Cj}
M
j=1, where each Cj consists of tuples {(Ii,Ei,Ki)}

N
i=1 as discussed in

Sec. 3.1.1.
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We reason about the set of functions {Φj}
M
j=1 that represent instances of objects belonging to

the same class. By parameterizing a specific Φj as an MLP, we can represent it with its vector

of parameters φj ∈ R
l. We assume scenes of the same class have common shape and appearance

properties that can be fully characterized by a set of latent variables z ∈ R
k, k < l. Equivalently,

this assumes that all parameters φj live in a k-dimensional subspace of Rl. Finally, we define a

mapping

Ψ : Rk → R
l, zj 7→ Ψ(zj) = φj (3.5)

that maps a latent vector zj to the parameters φj of the corresponding Φj . We propose to pa-

rameterize Ψ as an MLP, with parameters ψ. This architecture was previously introduced as a

Hypernetwork [113], a neural network that regresses the parameters of another neural network. We

share the parameters of the rendering function Θ across scenes. We note that assuming a low-

dimensional embedding manifold has so far mainly been empirically demonstrated for classes of

single objects. Here, we similarly only demonstrate generalization over classes of single objects.

Finding latent codes zj. To find the latent code vectors zj , we follow an auto-decoder frame-

work [58]. For this purpose, each object instance Cj is represented by its own latent code zj . The

zj are free variables and are optimized jointly with the parameters of the hypernetwork Ψ and the

neural renderer Θ. We assume that the prior distribution over the zj is a zero-mean multivariate

Gaussian with a diagonal covariance matrix. Please refer to [58] for additional details.

3.1.4 Joint Optimization

To summarize, given a dataset D = {Cj}
M
j=1 of instance datasets C = {(Ii,Ei,Ki)}

N
i=1, we aim to

find the parameters ψ of Ψ that maps latent vectors zj to the parameters of the respective scene

representation φj , the parameters θ of the neural rendering function Θ, as well as the latent codes

zj themselves. We formulate this as an optimization problem with the following objective:

argmin
{θ,ψ,{zj}M

j=1}

M∑

j=1

N∑

i=1

‖Θθ(ΦΨ(zj),E
j
i ,K

j
i )− I

j
i ‖

2
2

︸ ︷︷ ︸

Limg

+λdep‖min(dji,final,0)‖
2
2

︸ ︷︷ ︸

Ldepth

+λlat‖zj‖
2
2

︸ ︷︷ ︸

Llatent

. (3.6)

Where Limg is an ℓ2-loss enforcing closeness of the rendered image to ground-truth, Ldepth is a

regularization term that accounts for the positivity constraint in Eq. 3.4, and Llatent enforces a

Gaussian prior on the zj . In the case of a single scene, this objective simplifies to solving for the

parameters φ of the MLP parameterization of Φ instead of the parameters ψ and latent codes zj . We

solve Eq. 3.6 with stochastic gradient descent. Note that the whole pipeline can be trained end-to-

end, without requiring any (pre-)training of individual parts. In Sec. 3.2, we demonstrate that SRNs

discover both geometry and appearance, initialized at random, without requiring prior knowledge
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Figure 3.2: Shepard-Metzler object from 1k-
object training set, 15 observations each. SRNs
(right) outperform dGQN (left) on this small
dataset.

Figure 3.3: Non-rigid animation of a face. Note
that mouth movement is directly reflected in
the normal maps.

Figure 3.4: Normal maps for a selection of objects. We note that geometry is learned fully unsu-
pervised and arises purely out of the perspective and multi-view geometry constraints on the image
formation.

of either scene geometry or scene scale, enabling multi-view consistent novel view synthesis.

Few-shot reconstruction. After finding model parameters by solving Eq. 3.6, we may use the

trained model for few-shot reconstruction of a new object instance, represented by a dataset C =

{(Ii,Ei,Ki)}
N
i=1. We fix θ as well as ψ, and estimate a new latent code ẑ by minimizing

ẑ = argmin
z

N∑

i=1

‖Θθ(ΦΨ(z),Ei,Ki)− Ii‖
2
2 + λdep‖min(di,final,0)‖

2
2 + λlat‖z‖

2
2 (3.7)

3.2 Experiments

We train SRNs on several object classes and evaluate them for novel view synthesis and few-shot

reconstruction. We further demonstrate the discovery of a non-rigid face model. Please see the

supplement for a comparison on single-scene novel view synthesis performance with DeepVoxels [1].

Implementation Details. Hyperparameters, computational complexity, and full network archi-

tectures for SRNs and all baselines are in the supplement. Training of the presented models takes
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Figure 3.5: Interpolating latent code vectors of cars and chairs in the Shapenet dataset while rotating
the camera around the model. Features smoothly transition from one model to another.

on the order of 6 days. A single forward pass takes around 120 ms and 3 GB of GPU memory per

batch item. Code and datasets are available.

Shepard-Metzler objects. We evaluate our approach on 7-element Shepard-Metzler objects in

a limited-data setting. We render 15 observations of 1k objects at a resolution of 64× 64. We train

both SRNs and a deterministic variant of the Generative Query Network [11] (dGQN, please see

supplement for an extended discussion). Note that the dGQN is solving a harder problem, as it is

inferring the scene representation in each forward pass, while our formulation requires solving an op-

timization problem to find latent codes for unseen objects. We benchmark novel view reconstruction

accuracy on (1) the training set and (2) few-shot reconstruction of 100 objects from a held-out test

set. On the training objects, SRNs achieve almost pixel-perfect results with a PSNR of 30.41 dB.

The dGQN fails to learn object shape and multi-view geometry on this limited dataset, achieving

20.85 dB. See Fig. 3.2 for a qualitative comparison. In a two-shot setting (see Fig. 3.7 for refer-

ence views), we succeed in reconstructing any part of the object that has been observed, achieving

24.36 dB, while the dGQN achieves 18.56 dB. In a one-shot setting, SRNs reconstruct an object con-

sistent with the observed view. As expected, due to the current non-probabilistic implementation,

both the dGQN and SRNs reconstruct an object resembling the mean of the hundreds of feasible

objects that may have generated the observation, achieving 17.51 dB and 18.11 dB respectively.

Figure 3.7: Single- (left)
and two-shot (both) ref-
erence views.

Shapenet v2. We consider the “chair” and “car” classes of Shapenet

v.2 [114] with 4.5k and 2.5k model instances respectively. We disable

transparencies and specularities, and train on 50 observations of each

instance at a resolution of 128× 128 pixels. Camera poses are randomly

generated on a sphere with the object at the origin. We evaluate per-

formance on (1) novel-view synthesis of objects in the training set and

(2) novel-view synthesis on objects in the held-out, official Shapenet v2

test sets, reconstructed from one or two observations, as discussed in Sec. 3.1.4. Fig. 3.7 shows

the sampled poses for the few-shot case. In all settings, we assemble ground-truth novel views by

sampling 250 views in an Archimedean spiral around each object instance. We compare SRNs to

three baselines from recent literature. Table 3.1 and Fig. 3.6 report quantitative and qualitative

results respectively. In all settings, we outperform all baselines by a wide margin. On the training
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Ground TruthTatarchenko et al. SRNs
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Figure 3.6: Qualitative comparison with [4] and the deterministic variant of the GQN [11], for
novel view synthesis on the Shapenet v2 “cars” and “chairs” classes. We compare novel views for
objects reconstructed from 50 observations in the training set (top row), two observations and a
single observation (second and third row) from a test set. SRNs consistently outperforms these
baselines with multi-view consistent novel views, while also reconstructing geometry. Please see the
supplemental video for more comparisons, smooth camera trajectories, and reconstructed geometry.

50 images (training set) 2 images Single image

Chairs Cars Chairs Cars Chairs Cars

TCO [4] 24.31 / 0.92 20.38 / 0.83 21.33 / 0.88 18.41 / 0.80 21.27 / 0.88 18.15 / 0.79
WRL [5] 24.57 / 0.93 19.16 / 0.82 22.28 / 0.90 17.20 / 0.78 22.11 / 0.90 16.89 / 0.77
dGQN [11] 22.72 / 0.90 19.61 / 0.81 22.36 / 0.89 18.79 / 0.79 21.59 / 0.87 18.19 / 0.78
SRNs 26.23 / 0.95 26.32 / 0.94 24.48 / 0.92 22.94 / 0.88 22.89 / 0.91 20.72 / 0.85

Table 3.1: PSNR (in dB) and SSIM of images reconstructed with our method, the deterministic
variant of the GQN [11] (dGQN), the model proposed by [4] (TCO), and the method proposed
by [5] (WRL). We compare novel-view synthesis performance on objects in the training set (con-
taining 50 images of each object), as well as reconstruction from 1 or 2 images on the held-out test
set.

set, we achieve very high visual fidelity. Generally, views are perfectly multi-view consistent, the

only exception being objects with distinct, usually fine geometric detail, such as the windscreen of

convertibles. None of the baselines succeed in generating multi-view consistent views. Several views

per object are usually entirely degenerate. In the two-shot case, where most of the object has been

seen, SRNs still reconstruct both object appearance and geometry robustly. In the single-shot case,

SRNs complete unseen parts of the object in a plausible manner, demonstrating that the learned

priors have truthfully captured the underlying distributions.

Supervising parameters for non-rigid deformation. If latent parameters of the scene are

known, we can condition on these parameters instead of jointly solving for latent variables zj . We

generate 50 renderings each from 1000 faces sampled at random from the Basel face model [115].

Camera poses are sampled from a hemisphere in front of the face. Each face is fully defined by

a 224-dimensional parameter vector, where the first 160 parameterize identity, and the last 64
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dimensions control facial expression. We use a constant ambient illumination to render all faces.

Conditioned on this disentangled latent space, SRNs succeed in reconstructing face geometry and

appearance. After training, we animate facial expression by varying the 64 expression parameters

while keeping the identity fixed, even though this specific combination of identity and expression

has not been observed before. Fig. 3.3 shows qualitative results of this non-rigid deformation.

Expressions smoothly transition from one to the other, and the reconstructed normal maps, which

are directly computed from the depth maps (not shown), demonstrate that the model has learned

the underlying geometry.

Geometry reconstruction. SRNs reconstruct geometry in a fully unsupervised manner, purely

out of necessity to explain observations in 3D. Fig. 3.4 visualizes geometry for 50-shot, single-shot,

and single-scene reconstructions.

Latent space interpolation. Our learned latent space allows meaningful interpolation of object

instances. Fig. 3.5 shows latent space interpolation.

Pose extrapolation. Due to the explicit 3D-aware and per-pixel formulation, SRNs naturally

generalize to 3D transformations that have never been seen during training, such as camera close-

ups or camera roll, even when trained only on up-right camera poses distributed on a sphere around

the objects. Please see the supplemental video for examples of pose extrapolation.

Figure 3.8: Failure cases.

Failure cases. The ray marcher may “get stuck” in holes of sur-

faces or on rays that closely pass by occluders, such as commonly

occur in chairs. SRNs generates a continuous surface in these cases,

or will sometimes step through the surface. If objects are far away

from the training distribution, SRNs may fail to reconstruct geome-

try and instead only match texture. In both cases, the reconstructed

geometry allows us to analyze the failure, which is impossible with

black-box alternatives. See Fig. 3.8 and the supplemental video.

Towards representing room-scale scenes. We demonstrate reconstruction of a room-scale

scene with SRNs. We train a single SRN on 500 observations of a minecraft room. The room

contains multiple objects as well as four columns, such that parts of the scene are occluded in

most observations. After training, the SRN enables novel view synthesis of the room. Though

generated images are blurry, they are largely multi-view consistent, with artifacts due to ray marching

failures only at object boundaries and thin structures. The SRN succeeds in inferring geometry and

appearance of the room, reconstructing occluding columns and objects correctly, failing only on low-

texture areas (where geometry is only weakly constrained) and thin tubes placed between columns.
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Please see https://vsitzmann.github.io/srns for qualitative results.

3.3 Conclusion

In this chapter, we introduced SRNs, a 3D-structured neural scene representation that implicitly

represents a scene as a continuous, differentiable function. This function maps 3D coordinates to

a feature-based representation of the scene and can be trained end-to-end with a differentiable ray

marcher to render the feature-based representation into a set of 2D images. SRNs do not require

shape supervision and can be trained only with a set of posed 2D images. We demonstrate results

for novel view synthesis, shape and appearance interpolation, and few-shot reconstruction.

There are several exciting avenues for future work. SRNs could be explored in a probabilistic

framework [11, 61], enabling sampling of feasible scenes given a set of observations. SRNs could

be extended to model view- and lighting-dependent effects, translucency, and participating media.

They could also be extended to other image formation models, such as computed tomography or

magnetic resonance imaging. Currently, SRNs require camera intrinsic and extrinsic parameters,

which can be obtained robustly via bundle-adjustment. However, as SRNs are differentiable with

respect to camera parameters; future work may alternatively integrate them with learned algorithms

for camera pose estimation [116]. SRNs also have exciting applications outside of vision and graphics,

and future work may explore SRNs in robotic manipulation or as the world model of an independent

agent.

Complex 3D scenes and compositionality. Here, we outline a particularly relevant direction

for future work. While SRNs can represent simple room-scale scenes, few-shot reconstruction of

complex, cluttered 3D environments remains an open problem. While this problem has many facets,

we identify compositionality as a key challenge to achieving this goal. We formalize a simple notion

of compositionality, that directly motivates a toy experiment that may test for this property. Given

a room containing several objects, we identify the number of objects as a latent variable, n. For a

model to be compositional, then, it needs to be capable of out-of-distribution generalization with

respect to this latent variable. For instance, assume a training set of cubical rooms, with two

chairs placed in each room — thus, n = 2. A scene representation learner, such as SRNs, is now

trained for reconstruction of neural scene representations based on this dataset. For this model to

be compositional, it should subsequently be able to reconstruct an unseen scene exactly identical to

a scene in the training set, except there are three chairs placed in the room, i.e., n = 3. The present

formulation of SRNs does not have this property. While it can be trained to represent and reconstruct

room-scale scenes containing several objects each, it will fail to reconstruct a scene with a previously

unseen number of objects. This is expected considering the previous discussion of inductive biases

(see Section 1.1.3). Currently, SRNs do not have an inductive bias for compositionality. Similar

https://vsitzmann.github.io/srns
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to the failure of models to discover 3D structure without an appropriate inductive bias, SRNs

thus fail to recover compositional structure. Some prior work has attempted to equip computer

vision models with inductive biases for compositionality. Scenes may be represented as a set of

latent vectors, as opposed to a single latent vector, as in SRNs. In this paradigm, contributions of

latent vectors to the global scene are usually controlled via softmax weighting, enabling the model

to construct a scene of a variable number of components [117, 118]. Yet, these approaches are

focused on image-space decomposition, effectively assigning each pixel to a component, and do not

infer a global, scene-scale and 3D-structured representation. Furthermore, these approaches require

an assumption on the cardinality of the set of components represented by latent codes. Closely

related is the notion of exploiting shift invariance for compositionality. By design, a single filter

in the first layer of a convolutional neural network (CNN) is oblivious of its location in the image.

Thus, we can train a CNN on a dataset of images where each image contains, for instance, a single

MNIST digit. Then, we may assemble an image that contains two non-overlapping MNIST digits.

Shift invariance will guarantee that convolutional filters will generate the same local features for

both MNIST digits at their respective locations. We note that this is a simplification, as not all

popular CNN architectures are indeed strictly shift invariant and this is dependent on multiple

factors such as receptive field, padding, etc., but this simplified discussion serves to illustrate the

underlying principle. This property also applies to 3D convolutional neural networks. Recent work

has leveraged this property by representing a scene via a 3D voxelgrid, where voxels are locally

decoded into a continuous 3D scene representation, ambivalent to the number of objects in the

scene [119, 120]. However, these models arguably side-step the issue of compositionality by virtue

of not generating a single, global representation of the scene, but rather, learning local primitives

of the scene, and encoding these primitives in a localized data structure such as a voxelgrid. As a

result, these representations so far do not support few-shot reconstruction, instead requiring fairly

dense point clouds. Another promising approach are recently proposed capsule networks [121, 122].

Capsule networks explicitly model object-part relationships by representing a scene as a hierarchy

of capsules, small neural networks that each represent a particular feature in the target signal and

reason about the pose of this feature. This succeeds in disentangling highly overlapping MNIST

digits, but still requires the number of components to match between training and test time. To

summarize, while several attempts at equipping scene representations with an inductive bias on

compositionality exist, the author is unaware of an approach that generates a global, compact and

3D-structured scene representation that solves the proposed toy experiment.



Chapter 4

Inferring Semantic Information

with SRNs

Representations of 3D objects learned by humans are multi-modal and support learning of new

information with extremely limited supervision. For instance, a person does not need to be told

that a car wheel is a car wheel thousands of times, but only a few tens of times. Subsequently, this

newly learned semantic label can be directly associated with the person’s mental image of a car.

In addition, representations learned by humans enable 3D semantic reasoning: Observing a single

side-view picture of a car, humans can easily imagine what the other side of the car will look like,

including the different semantic classes of the parts involved, such as car door, wheel, or car window.

A similar level of semi-supervised learning and 3D scene understanding is also crucial for many

tasks in computer vision, robotics, and autonomous driving. In these applications, algorithms must

reason about a 3D scene given only partial information, such as a single image. In robotic grasping,

for instance, a robot has to simultaneously reason about the 3D geometry, appearance, and semantic

structure of an object in order to choose the optimal grasping point. In addition, human labeling is

expensive, and these applications would thus greatly benefit from label-efficient learning approaches.

Recent progress in representation learning has enabled competitive performance on 2D tasks when

only a limited amount of training data is available [25, 28, 123–125]. Here, 2D feature extractors

are trained with massive amounts of unlabeled data on a surrogate task. Once the representation

is learned, a limited amount of training data can be sufficient to train a simple classifier on the

pre-trained feature representation [28]. While these approaches are applicable to 2D, image-based

problems, they do not build a 3D-aware representation. Given a single image observation, they are

incapable of making predictions about unseen perspectives of the scene or occluded parts, a task

that is critical to 3D scene understanding and interaction.

In Chapter 3, we have introduced a 3D-structure-aware representation, Scene Representation

33
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Synthesized segmentation viewsSynthesized RGB views

 Input RGB view

 Input RGB view

Figure 4.1: We leverage 3D-structure-aware representation learning for 3D reconstruction and se-
mantic segmentation of objects, jointly reasoning about shape, appearance, and semantics. In this
particular application, a single RGB image of an unseen object (upper left) is fed into the network,
which is then capable of synthesizing perspectively consistent 3D RGB views of the object (left) as
well as part-level semantic segmentation labels (right).

Networks, that enables prior-based predictions about occluded parts in the context of view synthe-

sis. A näıve approach to extend SRNs to semantic segmentation would be to generate arbitrary

perspectives of a scene from limited observations and then apply standard 2D methods for seman-

tic segmentation or other tasks. Such an image-based approach, however, fails to infer a compact,

multi-modal representation that would allow for joint reasoning about all aspects of the scene.

In this chapter, we propose to leverage SRNs not for view synthesis, but as a representation learn-

ing backbone, enabling downstream tasks by inferring a multi-modal, compact 3D representation of

objects from 2D images. This approach enables, for the first time, dense 3D semantic segmentation

given only 2D observations. We then embed the latent 3D feature representation, learned in an unsu-

pervised manner given only posed 2D RGB images, in a standard semi-supervised learning strategy

for semantic segmentation. This enables dense 3D semantic segmentation given extremely limited

labeled training data of just a few tens of semantic segmentation labels. We demonstrate that this

unique combination of unsupervised, 3D-structure-aware pre-training and supervised fine-tuning en-

ables multi-view consistent view synthesis and semantic segmentation (see Fig. 4.1). Our approach

further enables several other novel applications, including interpolation of 3D segmentation labels

as well as 3D view and semantic label synthesis from just a single observed image or semantic mask.

To summarize, we make the following key contributions:

• We extend Scene Representation Networks to perform semantic segmentation, leading to a

semantically and 3D-structure-aware neural scene representation.
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• In a semi-supervised learning framework, we demonstrate that the resulting representation

can be leveraged to perform dense 3D semantic segmentation from only 2D observations, given

as few as 30 semantic segmentation masks. We demonstrate that features learned by the 3D

neural scene representation far outperform a neural scene representation without 3D structure.

• We demonstrate multi-view consistent rendering of semantic segmentation masks, including

parts of the object that are occluded in the observation.

• We demonstrate joint interpolation of geometry, appearance, and semantic labels, and demon-

strate how a neural scene representation can be inferred from either a color image or a semantic

segmentation mask.

4.1 Prior work in semantic segmentation

The advent of deep learning has had a transformative impact on the field of semantic segmentation.

Seminal work by Long et al. [126] introduced fully convolutional neural networks for pixel-level

semantic labeling. Numerous CNN-based approaches further refined this initial idea of semantic

segmentation on images [93, 127–129]. Closely related are CNNs for semantic segmentation of RGB-

D data. Here, depth is treated as an additional input channel fed directly to the CNN [130–133].

In either case, semantic segmentation is performed on a per-pixel basis, i.e., each pixel is assigned a

semantic class. Importantly, these models do not infer a global, 3D-structure-aware representation

of the underlying scene. As a result, they are fundamentally incapable of predicting semantic labels

of an unseen perspective of the scene. Recent work in this area has increasingly incorporated ideas

from 3D computer vision. Semantic segmentation has thus been formulated in cases where both

geometry and color information are available [134–136]. However, these methods operate on point

clouds or voxel grids and therefore rely on explicit geometry representations. To the best of our

knowledge, no semantic segmentation approach infers 3D semantic labels given a posed 2D image,

including occluded parts. This is enabled by our approach, which may generate semantic label

masks for novel camera perspectives, accurately generating, for instance, the 3D semantic label of

the leg of a chair that was entirely occluded in the image observation. Note that we do not claim

performance gains on 2D semantic segmentation. Our goal is to learn a single representation that

jointly encodes information about 3D geometry, appearance and semantic segmentation. While we

do rely on comparisons in image space, as this is the only data we have access to, we stress that this

is merely a surrogate to demonstrate that the 3D representation contains semantic information, and

not an attempt at an incremental improvement on 2D semantic segmentation.
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Figure 4.2: Overview of the proposed semi-supervised method. From left to right: (1) We train a
scene representation network (SRN) for novel view synthesis of RGB images using a large dataset
of 2D posed images in an autodecoder-framework [58], where each object instance is represented by
its own code vector zi. (2) We then freeze code vectors and weights of the SRN and train a linear
segmentation classifier on SRN features, using human-annotated semantic labels of a very small
(30 images) subset of object instances in the training set. (3) At test time, given a single posed
RGB image and/or label mask of an instance unseen at training time, we infer the latent code of
the novel object. (4) Subsequently, we may render multi-view consistent novel RGB and semantic
segmentation views of the object instance.

4.2 Method

In the following section, we demonstrate how we can extend SRNs to perform 3D semantic segmen-

tation by adding a Segmentation Renderer in parallel to the existing RGB Renderer. We then view

SRNs through the lense of representation learning and apply a semi-supervised learning strategy.

This yields 3D semantic segmentation from 2D RGB observations and their camera parameters,

given an extremely limited number of semantic segmentation masks.

4.2.1 Semantically-aware Scene Representation Networks

We extend the SRN framework to perform joint 3D reconstruction and semantic segmentation. We

formalize semantic segmentation as a function that maps a world coordinate x to a distribution

over semantic labels y. This can be seen as a generalization of point cloud- and voxel-grid-based

semantic segmentation approaches [49, 134, 137], which label a discrete set of world coordinates,

sparsely sampling an underlying, continuous function. We recall that the key idea of SRNs it to

encode a scene in the weights w ∈ R
l of a fully connected neural network, the srn itself. To this

end, a scene is modeled as a function that maps world coordinates x to a feature representation of
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local scene properties v:

srn : R3 → R
n, x 7→ srn(x) = v. (4.1)

To leverage SRNs for semantic segmentation, we represent the semantic label function as a compo-

sition of the scene representation network (eq. 4.1) and an additional Segmentation Renderer seg

that maps a feature vector v to a distribution over class labels y:

seg : Rn → R
m, v 7→ seg(v) = y. (4.2)

In other words, this amounts to adding a Segmentation Renderer in parallel to the existing RGB

Renderer. We may now enforce a per-pixel cross-entropy loss on the output of seg at any world

coordinate x:

Lco =

c∑

j=1

ŷj log σ(seg(srn(x)) (4.3)

where ŷj is a one-hot ground-truth class label with c number of classes, and σ is the softmax

function. The segmentation renderer can be trained end-to-end with the classic SRN architecture.

In effect, this supervises the features v encoded in srn to carry information about geometry via

the ray-marcher, RGB color via the RGB Renderer, and semantic information via the Segmentation

Renderer seg. At test time, this formulation allows us to infer a code vector z from either RGB

information, semantic segmentation information, or both. In any of these cases, a new code vector

is inferred by freezing all network weights, initializing a new code vector z, and optimizing z to

minimize image reconstruction and/or cross entropy losses, see Fig. 4.2, Step 3.

4.2.2 Semi-Supervised Learning of Semantically-aware SRNs

While training an SRN end-to-end with a segmentation renderer on a large dataset of human-labeled

images is intuitive, it has a significant weakness: it relies on a massive amount of labeled semantic

data. Such labeled data may be difficult to obtain for a variety of different computer vision tasks.

Moreover, it is desirable for an independent agent to infer an understanding of the different modes

of an object it has not encountered. Such an unsupervised exploration cannot rely on a pipeline that

requires thousands or millions of interactions with each object class to infer semantic properties.

For computer vision models that operate on per-pixel features, such as image recognition, object

bounding box detection, or 2D semantic segmentation, the emerging field of representation learning

aims to address this problem [25, 28, 124, 125]. However, none of these approaches infer a 3D-aware

representation that would support predictions about parts of an object that are occluded in the

input image.

Inspired by these approaches, we interpret SRNs as a representation learning technique. The
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 [Semi-Supervised]

Single Pose

SRN+U-Net(ours)
 [Fully-Supervised]

TCO+Linear
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Figure 4.3: Comparison of the single view models, which can synthesize arbitrary RGB and seg-
mentation views from a single posed RGB image. The proposed semi-supervised SRN+linear qual-
itatively outperforms the baseline semi-supervised approach by Tatarchenko et al. [4] (TCO) and is
comparable to the fully-supervised SRN+U-Net approach in terms of 3D consistency and semantic
segmentation. Note that all other models, including the Oracle RGB+U-Net, cannot perform such a
task and require all views of ground truth RGB images at test time in order to perform segmentation.

multi-view re-rendering loss at training time can be seen as enforcing that the underlying representa-

tion, srn, encodes information about appearance and geometry. We hypothesize that features that

encode appearance and geometry will also be useful for the downstream task of dense 3D semantic

segmentation.

We assume that for a small subset of our training corpus of RGB images and their camera

parameters, we are given a few human-labeled per-pixel semantic labels. We now embed SRNs in

a standard semi-supervised training framework. Fig. 4.2 summarizes the proposed semi-supervised

approach. In the first step, we pre-train the weights of the hypernetwork hn, the latent embeddings

zi of the object instances in the training set, as well as the weights of the differentiable rendering

purely for image reconstruction requiring only posed RGB images as well as their extrinsic and

intrinsic camera parameters. Subsequently, we freeze zi as well as the weights of hn and the

differentiable renderer and train the proposed Segmentation Renderer seg on the learned feature

vectors v, supervised with human-labeled semantic segmentation masks of a small subset of the

training images. In this case of limited training data, we choose to parameterize the segmentation

renderer seg as a simple linear classifier.
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4.3 Analysis

In this section, we demonstrate that the proposed representation learning approach using 3D-

structure-aware neural scene representations succeeds in dense 3D semantic segmentation given

extremely few labels.

Note that we do not claim performance gains on existing 2D semantic segmentation approaches.

Instead, our goal is to learn a single, compact representation that jointly encodes information about

3D geometry, appearance and semantic segmentation. To do so, we have to rely on comparisons in

image space, as this is the only data we have access to. We stress that this is merely a surrogate

to demonstrate that the 3D representation contains semantic information, and not an attempt at

an incremental improvement on 2D semantic segmentation. Note that existing 2D representation

learning techniques are not applicable to the problem at hand, as they do not infer a 3D-aware

representation and therefore rely on image input that shows all the parts of an object for which

features are to be extracted. While it is possible to achieve similar input-output behavior with 2D

approaches by building a pipeline that first leverages SRNs for novel view synthesis and subsequently

feeds the image to a 2D model, this does not demonstrate a multi-modal 3D representation, but

rather encodes 3D information in the SRNs representation and semantic information in the 2D

architecture. This doesn’t support simultaneous reasoning about multiple modalities in 3D, which

is critical to many real-world computer vision tasks. We thus refrain from comparisons to such

baselines.

Implementation. We implement all models in PyTorch. We train SRN-based models on Nvidia

RTX8000 GPUs, and other models on Pascal TitanX GPUs. The srn as well as the RGB Renderer

are implemented as 4-layer MLPs with 256 units each, ReLU nonlinearities, and LayerNorm before

each nonlinearity. The raymarcher is implemented as an LSTM [112] with 256 units. We ray march

for 10 steps. We train our models using ADAM with a learning rate of 4e−4. SRN-based models

are trained for 20k steps at a resolution of 64 with a batch size of 92, and trained for another 85k

steps at a resolution of 128 with a batch size of 16. Image reconstruction loss and cross-entropy loss

are weighted 200 : 8, such that their magnitudes are approximately equal.

Dataset. For all experiments, we use the PartNet [138] and ShapeNet [114] datasets, which con-

tains 3D meshes as well as their human-labeled semantic segmentation for a variety of object classes.

We conduct experiments using the chairs and tables classes, with 4489 and 5660 object instances in

the training set, 617 and 839 in the validation set, and 1214 and 1656 in the test set respectively.

Partnet contains labels at several resolutions. We conduct all experiments at the coarsest level of

segmentation, leading to 6 and 11 semantic classes respectively. We render observations using the

Blender internal rasterizer. For training and validation sets, we render 50 camera perspectives sam-

pled at random on a sphere around each object instance. For the test set, we render 251 camera
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Figure 4.4: Qualitative comparison of semi-supervised and fully supervised approaches. Semi-
supervised approaches (left column) are first pre-trained in an unsupervised manner on a large
dataset of posed RGB images. Subsequently, a linear segmentation classifier is fit to a per-pixel
feature representation on only 30 pairs of RGB images and their per-pixel semantic labels. At test
time, these methods receive a single posed RGB image. The proposed semi-supervised SRN+linear
approach succeeds in reconstructing occluded geometry, semantic labels, and appearance, given
only a single observation, and far outperforms the baseline 3D representation learning approach by
Tatarchenko et al. [4]. Fully supervised approaches (center column) are trained on the full training
corpus of RGB images and their per-pixel semantic class. At test time, Oracle RGB+U-Net re-
ceives novel RGB views of the object from an oracle, representing the upper bound of achievable
segmentation accuracy. The SRN+U-Net baseline first leverages the 3D representation inferred by
SRNs for novel view synthesis and segments the resulting image using a 2D U-Net. Here, the SRN
representation is inferred from either a single view or multiple views. This serves as an upper bound
for segmentation accuracy if only limited 2D observations are available. Please note that neither
of these methods demonstrate a multi-modal 3D representation that encodes information about 3D
appearance, geometry, and semantic information, instead performing 2D semantic segmentation in
image space. Please see the supplement for semi-supervised SRN+Linear multi-shot results.

perspectives sampled from an Archimedean spiral around each object instance.

Evaluation. For quantitative evaluation of segmentation accuracy in image space, we adopt the

mean pixel intersection over union (mIOU) and shape mIOU metric. We compute mIOU over

all classes including the background class. For a single image, mIOU averages intersection over

union over all classes. We subsequently compute the mean of mIOUs over all images and instances.

In contrast, shape mIOU averages intersection over union scores across all images and instances

separately for each semantic class. Note that the shape mIOU score is generally much lower than

the mIOU score. This is due to the fact that the chosen objects have rare semantic classes that

appear only in a small subset of all instances and are thus very difficult to score well on, lowering

the per class average of shape mIOU.
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Semi-supervised, small dataset Supervised, small dataset Supervised, full dataset

TCO+linear SRN+linear (ours) Oracle RGB + U-Net SRN+U-Net Oracle RGB + U-Net
single view single view multi view single view multi view multi view

Chairs 28.4 / 23.3 48.7 / 42.3 42.2 / 38.0 60.9 / 51.8 74.2 / 63.7 77.3 / 66.0
Tables 32.8 / 11.4 58.7 / 18.3 50.3 / 17.9 70.8 / 26.5 78.9 / 40.5 81.0 / 44.7

Table 4.1: Quantitative comparison of semi-supervised and supervised approaches. We benchmark
methods on mIOU as well as shape-mIOU. Semi-supervised approaches (left column) as well as the
Supervised, small-dataset baseline are trained on 10 randomly sampled instances, 3 observations
each. Supervised, full dataset (center column) baselines are trained on all training examples.

4.3.1 Representation learning for semi-supervised semantic segmenta-

tion.

We experimentally evaluate the proposed multi-modal, 3D-aware neural scene representation. We

show how this enables dense 3D semantic segmentation from extremely few labels, given only a single

2D observation of an object, supporting subsequent multi-view consistent rendering of semantic

information.

As discussed in 4.2.2, we first pre-train one scene representation network per object class to

obtain a 3D-structure-aware neural scene representation. We then pseudo-randomly sample 10

object instances from the training set such that all semantic classes are present. For each of these

instances, we randomly sample 3 posed images. Following the proposed semi-supervised approach,

we now freeze the weights of all neural networks and latent codes. We train a simple linear classifier

to map features at the intersection points of camera rays with scene geometry to semantic labels.

We benchmark the proposed method with a semi-supervised approach that uses an auto-encoder-

based neural scene representation backend, the novel-view synthesis architecture of Tatarchenko et

al. [4]. We pre-train this architecture for novel-view synthesis on the full training set to convergence

of the validation error and then retrieve features before the last transpose convolutional layer. We

then train a single linear transpose convolutional layer on these features on the same subset of labeled

examples as the proposed semi-supervised approach for direct comparison.

As a 3D-structure aware reference model, we train the proposed model end-to-end with a U-Net

segmentation classifier (see Sec. 2.1) on the full training dataset. This yields an upper bound of

segmentation accuracy of an SRN-based approach in a fully supervised regime of abundant labeled

training data. Note that this reference model does not infer a compact, multi-modal 3D-aware

representation. Instead, this model may perform semantic segmentation in image space, and thus

does not come with guarantees that the 3D-aware intermediate representation encodes all information

necessary for 3D semantic reasoning.

We first demonstrate that the proposed method enables single-shot reconstruction of a represen-

tation that jointly encodes color, geometry, and semantic information. Fig. 4.3 shows the output of

the auto-encoder style baseline, the proposed semi-supervised approach, and the end-to-end trained
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Figure 4.5: Interpolating latent code vectors while tracking the camera around the model. Both
semantic labels and color features transition smoothly from object to object, demonstrating a tight
coupling of semantic labels, geometry and texture of the objects.

fully supervised reference model. The proposed semi-supervised approach succeeds in generating a

multi-view consistent, dense 3D semantic segmentation, and performs comparable to the end-to-end

supervised reference model. Lacking the 3D-structure-aware representation that the proposed model

utilizes, the auto-encoder based neural scene representation baseline fails to perform multi-view con-

sistent semantic segmentation. The first four columns of Fig. 4.4 show further qualitative results

for dense 3D semantic segmentation given single and multiple input views. Finally, Table 4.1 shows

quantitative results for the discussed methods. Consistent with qualitative results, the proposed

semi-supervised approach far outperforms the auto-encoder based neural scene representation and

even approaches the performance of the single view, fully-supervised SRN reference model (see Ta-

ble 4.1, column 4 and Fig. 4.3). While the proposed model’s linear classifier sometimes struggles

with parts of objects with higher inter-instance variance, it performs similarly to the reference mod-

els on common parts of objects, such as backrests, legs or the seat in the case of chairs. Thus, the

proposed method is the best model in the most difficult regime of single view reconstruction with

semi-supervision and is comparable to the performance of the SRN reference model trained in a

fully-supervised regime.

4.3.2 2D reference models with novel-view oracle.

As a reference for how well 2D semantic segmentation algorithms perform on this task, we train a

modern U-Net architecture on all pairs of images and their per-pixel semantic labels in the training

dataset. This 2D approach does not support predictions about parts of the object that are occluded

in the input view. For this reason and to obtain an upper bound for the semantic segmentation

performance, at test time, we feed this architecture with a ground-truth RGB rendering of each test

view. We note that this is a significantly easier task, as these models do not have to perform any 3D

reconstruction or, in fact, any 3D reasoning at all, and can instead infer a per-pixel semantic label

from 2D pixel neighborhoods with perfect information.

Parameters of the U-Net are approximately matched with the proposed SRN-based approach.

Each downsampling layer consists of one stride-one convolutional layer, followed by one stride-two
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Synthesized segmentation views Synthesized RGB views

 Input seg. view

Figure 4.6: The proposed representation learning method is bi-directional: it may infer a neural scene
representation either from RGB images or semantic segmentation masks, or both. Here, we show
renderings of a chair, reconstructed from a single semantic segmentation mask, using the proposed
fully supervised model.

convolutional layer. Each upsampling layer consists of one stride-two transpose convolutional layer,

followed by one stride-one convolutional layer. We use BatchNorm and LeakyReLU activations

after each convolutional block and dropout with a rate of 0.1. We train this model using the Adam

optimizer with a learning rate of 4e−4 and a batch size of 64 until convergence of validation error

after about 80k iterations or 20 epochs.

As expected, this oracle model (Table 4.1, column 6) outperforms the SRN reference models as

well as the proposed semi-supervised method. However, it exists in the easiest regime of all the

models, having access to the full dataset of segmentation maps for training and all the oracle RGB

views at test time. Qualitatively, for more common objects in the test set, the single-view SRN

reference model and the proposed single-view, semi-supervised model actually perform comparably

to the oracle model, despite receiving only a small subset of the total information at both train

and test time. Furthermore, the proposed models are able to perform the task of generating novel

appearance and semantic segmentation views from a single observation, which the 2D-only oracle

model cannot even evaluate. However, due to performing 3D reconstruction in addition to semantic

segmentation, the proposed method fails whenever 3D reconstruction fails. This may be the case

for out-of-distribution objects. This failure mode is completely absent from the 2D oracle method.

Please refer to the supplemental video for a detailed investigation of such cases.

For further intuition, we train the reference 2D U-Net on the same 30 image-semantic-label pairs

that the proposed semi-supervised approach is trained on. In order to prevent the model from

over-fitting, we use the validation set to perform a hyper-parameter search over dropout rates and

use early-stopping. Despite using additional segmentation data beyond the 30 training examples in

order to perform early-stopping and having access to the RGB novel-view oracle at test time, this

U-Net baseline (Tab. 1, column 3) is outperformed by the proposed semi-supervised method. This

baseline does not have the compact 3D multi-modal representation of the proposed method, and

thus fails to generalize to other instances of the same class nor maintain 3D-consistent views.
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Figure 4.7: Failure cases.

4.3.3 Instance Interpolation.

Interpolating latent vectors inferred in the proposed framework amounts to jointly interpolating

geometry, appearance and semantic information. Fig. 4.5 visualizes a latent-space interpolation of

two chairs in the test set, both reconstructed from a single view by the proposed semi-supervised

linear model. Geometry, appearance and semantic labels interpolate smoothly, demonstrating a

tight coupling of these modalities.

4.3.4 3D reconstruction from semantic mask.

As an instantiation of the auto-decoder framework [58], inferring the neural scene representation of a

novel object amounts to initializing and subsequently optimizing a new embedding vector to minimize

reconstruction error. As the proposed method may be supervised by both semantic segmentation

labels and RGB renderings, it also enables reconstruction of neural scene representations through

either modality. Fig. 4.6 visualizes 3D reconstruction of a chair from a single posed segmentation

mask, while Fig. 4.1 demonstrates reconstruction from a single posed color image.

4.3.5 Failure cases.

Fig. 4.7 displays failure cases of the proposed approach. The proposed approach inherits limitations

and failure cases of scene representation networks, such as failure to reconstruct strong out-of-

distribution samples or objects with small gaps or high-frequency geometric detail. In these cases,

the semantic segmentation fails as well. In the semi-supervised regime, the linear classifier sometimes

fails to assign the correct class even if geometry and appearance were reconstructed correctly, which

we attribute to its limited representative power. We note that as both appearance-based 3D neural

scene representation methods as well as semi-supervised representation learning methods further

develop, these failure cases will improve.
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4.4 Conclusion

In this chapter, we presented a 3D representation learning approach to joint reconstruction of ap-

pearance, geometry, and semantic labels. Our semi-supervised approach allows us to perform dense

3D semantic segmentation of a class of objects given as few as 30 human-annotated, posed semantic

segmentation masks. At test time, this enables full 3D reconstruction and dense semantic segmenta-

tion from either posed RGB images, semantic segmentation masks, or both, from as few as a single

observation. After reconstruction, the proposed approach enables multi-view consistent RGB and

semantic view generation. We believe that this work outlines an exciting direction of extending

representation learning methods into 3D and taking advantage of features that encode both shape

and appearance. As both of these fields independently develop more powerful techniques, we expect

that our proposed technique, which utilizes these methods collaboratively, will also improve.



Chapter 5

Conclusion

Scene representation is an essential aspect of artificial intelligence. Generative modeling with neu-

ral networks offers a powerful framework to leverage vast amounts of data in the form of weakly

structured, unlabeled observations.

It is straightforward to assemble generative models that comply with the input-output behavior

of the proposed self-supervised scene representation learning framework. Yet, existing methods for

scene representation learning lacked an inductive bias on the 3D structure of scenes, and therefore

failed to discover shape and geometry of scenes from limited data.

Our main contribution was a principled approach to equipping neural network models with such

an inductive bias. We achieved this by factorizing the encoder and neural rendering algorithms into

sub-routines that explicitly enforce multi-view and perspective geometry. By leveraging recent dif-

ferentiable programming frameworks, it is straightforward to optimize the resulting algorithm in an

end-to-end manner, thereby learning distributed representations of 3D environments. In Chapter 2,

we demonstrated that this framework can enable high-quality novel view synthesis on real-world 3D

environments. However, the proposed approach was limited by its reliance on the classic voxelgrid as

its scene representation. By rethinking the nature of scene representations in a deep learning frame-

work and replacing the classic voxelgrid with an implicit neural scene representation, we enabled

the learning of priors over distributions of 3D environments, in turn enabling full 3D reconstruc-

tion of objects from only a single observation. Finally, we demonstrated that 3D structure and

human assignment of semantic labels are closely linked, enabling us to exploit the features learned

by Scene Representation Networks for semi-supervised semantic segmentation from an extremely

limited dataset of labeled examples.
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5.1 Discussion

Here, we would like to reflect on the nature and potential role of scene representation learning in

computer vision itself. We consider the case when the only available observations are 2D images,

and no measurements of scene geometry are available. We first make a trivial statement: Any 2D

image observation captured with a camera is a two-dimensional projection of an otherwise three-

dimensional scene.

This seemingly obvious insight raises important questions for current state-of-the-art approaches

to computer vision. Existing approaches to major computer vision applications such as semantic

segmentation, classification, object detection, object tracking, scene understanding, etc. rely almost

exclusively on 2D feed-forward convolutional neural networks (CNNs). CNNs infer increasingly

abstract 2D feature representations of an image via a composition of convolutional layers with

normalization layers and nonlinearities. Following above insight, we might ask: How do CNNs

account for the 3D nature of imaged environments?

The answer is that CNNs have no explicit notion of 3D structure of the scenes underlying the

observations. The key inductive bias enforced by CNNs is 2D shift-invariance of features. We note

that even this assumption, however, does not hold in 3D environments, where observations follow a

perspective image formation model. For instance, when looking down a hallway with wooden tiling,

perspective foreshortening of the wood texture yields a signal that is significantly different for parts

of the floor close to the camera than for those that are further away. This lack of 3D inductive

biases is demonstrated by the failure of CNN baselines in the previous chapters to correctly generate

multi-view and perspectively consistent observations of even simple 3D scenes.

More generally, it is well-known that representations inferred by CNNs are not equivariant to

3D transformations such as 3D rotations, translations, scaling, changes in focal length, etc. Equiv-

ariance expresses the intuitive notion that whatever representation is inferred by the encoder should

disentangle, for instance, the scale of an object from the nature of the object. Humans naturally

have this ability: when presented with an image of small cat, we can easily infer that we are, in fact,

observing a cat, albeit a small one. In contrast, a CNN that has been trained only on images of

average-sized cats might fail entirely to recognize that the image displays a cat, and has no notion

of its scale altogether. Though some recent work proposes methods to alleviate this shortcoming in

CNNs [139], state-of-the-art image classification models do not account for this fact. As a result,

CNNs require massive amounts of labeled training data to gain robustness to 3D transformations.

In contrast, the models discussed in this work are all endowed with a 3D inductive bias in

the form of a 3D-structure-aware scene representation and an image formation model based on

multi-view and perspective geometry. Specifically, Scene Representation Networks as discussed

in Chapter 3 are fully equivariant to rigid body motion of the camera as well as modifications of the

camera intrinsic parameters. This enables Scene Representation Networks to generalize to camera

perspectives completely unobserved at training time, such as a zoomed-in view or rotation around
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the camera’s principle axis.

This suggests a drastically different approach to tackling existing computer vision applications,

that can be summarized by the paradigm: “All computer vision is 3D computer vision”.

Instead of engineering models that operate in image space without a well-defined scene represen-

tation, we argue to frame all vision models as models that operate on 3D-structured neural scene

representations. In the case of single-image object detection, for instance, this would mean that the

first step of the model is a prior-based scene reconstruction step performed by an observation en-

coder infer, yielding a 3D-structure-aware neural scene representation that leverages learned prior

information to resolve ambiguities. Subsequently, a classifier operates directly on the neural scene

representation, without access to the original image observations altogether. In Chapter 4, we have

seen one, albeit simple, instantiation of this framework: Instead of a 2D CNN performing semantic

segmentation in image space, we exploit the power of scene representation networks to reconstruct

a full 3D representation, and formulate semantic segmentation as an operation on this inferred rep-

resentation. This inherits all properties of scene representation networks, such as equivariance to

rigid-body motion of the camera.

Of course, existing scene representation learners —including the ones proposed in this work—are

as of know extremely limited in the complexity of the scenes that they can learn effective priors over.

This leads us to the final section of this work.

5.2 Future Work

While we have taken a significant step towards enabling neural networks to effectively infer proper-

ties of 3D environments, several open questions remain. First and foremost, DeepVoxels and Scene

Representation Networks seem to suggest a trade-off in the learning of priors and photo-realism.

While DeepVoxels are able to model real-world captures with high visual quality, Scene Represen-

tation Networks fall short of photorealism, and are constrained to rather simple 3D environments

such as single objects or simple room environments. While follow-up work to scene representation

networks such as Mildenhall et al. [140] has since demonstrated that implicit scene representations

are capable of complete photo-realism, these methods have so far withstood the learning of priors

over the parameters of the learned representation. As of today, to the best of the author’s knowledge,

no method has been proposed that allows both high-quality novel view synthesis and the learning of

priors and thereby, inferring the scene representation from few observations. As a result, methods

such as DeepVoxels or Mildenhall et al. [140] require rather many, densely sampled observations.

In this work, we rely on the availability of camera parameters for all image observations. While

camera pose estimation is a well-understood research field and modern sparse bundle-adjustment

algorithms can estimate camera parameters robustly and fairly efficiently, it is nevertheless desirable

to leverage shape and appearance priors also for the camera parameter estimation itself. As all
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proposed models are differentiable with respect to the camera parameters, future work may explore

integration with recent differentiable camera parameter estimators [116].

Another promising direction of future research are the multitude of properties of natural 3D

environments other than their apparent 3D structure, such as the dynamics governed by hamiltonian

mechanics, light transport and its interactions with materials such as reflections, scattering and

participating media, or the propagation of sound. Modern humans have an extraordinary intuitive

understanding of these effects, enabling us to effectively integrate cues related to these effects into

our model of a 3D environment.

As suggested in the previous section, a key direction of future research will be the application

of scene representation learners to existing computer vision problems, such as classification, seg-

mentation, object detection, etc. Another fascinating direction for future work, however, is the

applications of scene representations in fields other than computer vision. In natural language, for

instance, a neural representation may enable integration, persistence, and subsequent referencing of

communicated information.

Lastly, it is unclear how precise models of environments have to be to support intelligent decision-

making. To grasp an object, for instance, it may not be necessary to infer a representation that

accurately models specular effects on its surface, and instead, an approximate representation of the

object’s geometry may suffice. This suggests future work that integrates the proposed 3D-structure-

aware scene representation with an independent agent, such as a robot performing grasping or an

autonomous vehicle.



Appendix A

DeepVoxels additional results

A.1 Results on two Additional Synthetic Scenes

Ours - Test ViewsGround Truth Worrall et al. OursPix2Pix

Figure A.1: Qualitative results on two additional objects.

Bus Shoe
PSNR / SSIM PSNR / SSIM

Nearest Neighbor 17.96 / 0.89 17.49 / 0.88
Tatarchenko et al. [4] 22.58 / 0.94 20.00 / 0.91
Worrall et al. [5] 19.30 / 0.91 20.34 / 0.91
Pix2Pix (Isola et al.) [6] 24.41 / 0.95 23.45 / 0.93
Ours 31.78 / 0.98 33.70 / 0.98

Table A.1: Quantitative comparison to four baselines on two additional scenes. Our approach obtains
the best results in terms of PSNR and SSIM on all objects. See Fig. A.1 for qualitative results.
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Ground Truth 479 images 200 images 100 images

Figure A.2: Impact of number of training images on performance. From left to right: ground truth,
models trained with 479, 200, and 100 images. While fine detail degrades with a decreasing number
of images, the overall geometry stays coherent. Notably, on the pedestal dataset, we still outperform
all baselines for 200 images with 30.65dB and with 26.15dB for 100 images, less than a fourth of the
data.

A.2 Sensitivity to Number of Training Images

We investigate how the number of images in the training set impacts model performance. Figure A.2

shows novel views for a varying number of training images. Performance degrades gracefully with a

decreasing number of images: While fine detail is reduced significantly, 3D geometry and rigid body

motion is preserved.

A.3 Sensitivity to Volume Resolution

We demonstrate the impact of a smaller volume resolution on model performance. Figure A.3

shows novel views for a coarser discretization than the proposed 32 voxels per dimension. While

high-frequency detail is degraded, 3D geometry stays consistent.

A.4 Sensitivity to Additive Rotational Noise

We demonstrate the impact of additive uniform random noise added to training poses. We trained

the model on the pedestal with 1◦ and 5◦ random uniform rotation added to training poses. The

model achieves 26.98dB at 1◦, still out- performing all baselines, and 23.33dB at 5◦, outperforming

three baselines. See Fig. A.4 for examples. We note that our model has no trouble handling noisy

poses obtained via bundle-adjustment.

A.5 Results on Real-World Captures

Here, we outline additional details on real-world data captured with a digital single-lens reflex cam-

era. For each scene, we captured approximately 450 photographs. We use sparse bundle adjustment
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Ground Truth 32 3 grid 16 3 grid
3

8 grid

Figure A.3: Impact of volume resolution. From left to right: ground truth, models with grid
resolution 32, 16 and 8 and PSNRs over the whole test set of 32.35dB, 30.13dB and 25.15dB.
Quality deteriorates gracefully, with loss of fine detail but preservation of overall geometry.

Ground Truth No noise 1° noise 5° noise

Figure A.4: Impact of additive geometric noise in camera poses. From left to right: ground truth,
no noise, 1◦ rotational noise, and 5◦ rotational noise and PSNRs over the whole test set of 32.35dB,
26.98dB and 23.33dB.

to estimate intrinsic and extrinsic camera parameters, as well as a sparse point cloud of keypoints to

estimate the scale and center of gravity of the scene. Photographs were subsequently symmetrically

center-cropped and downsampled to a resolution of 512 × 512 pixels. Zoom and focus were set at

fixed values throughout the capture.
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A.6 Failure Cases

Mirrors not
synthesized

Features smaller than voxel

Unseen bottom of shoe

Pose extrapolation Camera roll undersampling

Figure A.5: Failure cases of the proposed method. From left to right: If features are significantly
smaller than a voxel, our method fails to synthesize them. For strong pose extrapolation, our method
may generate imagery with holes or views that are not multi-view consistent. Since our training
data does not include variation in camera roll, object views are sampled only sparsely when seen
from the top due to the gimbal lock. This may lead to multi-view inconsistencies when objects are
seen from the top (see the “V” in the CVPR logo). For the vase, we found this may lead to “holes”
in generated images (right) - this may be due to the similarity of the vase color to the background
color.
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A.7 DeepVoxels Submodule Architectures
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Image
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All layers with 0.2 dropout prob.

3D Inpainting Network

Figure A.6: Precise architectures of the feature extraction, rendering, inpainting and occlusion net-
works. They all follow the basic U-Net structure, while following general best practices in generative
network architectures: Reflection padding instead of zero padding, kernel size divisible by stride.
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A.8 Baseline Architecture Tatarchenko et al. [4]
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Figure A.7: Architectural details of the autoencoder baseline model with latent pose concatenation
as proposed by Tatarchenko et al. [4].
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A.9 Baseline Architecture Worrall et al. [5]

From feature 

transform

To feature 

transform

Encoder

Image

Novel View

 + BatchNorm + ReLU

 + BatchNorm + LeakyReLU

Decoder

All layers with 0.2 dropout prob.

4x4x512 fc 3x1850

3x1850

3x1850 fc 4x4x512
Fully Connected + LeakyReLU

4x4x512

8x8x512

8x8x512

16x16x512

32x32x512

64x64x256

256x256x128

256x256x128

Figure A.8: Architectural details of the baseline model based on a rotation-equivariant latent space
as proposed by Worrall et al. [5].
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A.10 Baseline Architecture Pix2Pix (Isola et al. [6])
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Figure A.9: Architectural details of the image-to-image translation baseline model based on Pix2Pix
by Isola et al. [6].
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A.11 Comparison of Ground-Truth Depth to Estimated Depth

Ground Truth DeepVoxels Ground Truth DeepVoxels Ground Truth DeepVoxels Ground Truth DeepVoxels

Figure A.10: Comparison of ground truth depth maps and the depth maps implicit in the DeepVoxels
voxel visibility scores (upsampled from a resolution of 64×64 pixel). We note that these depth maps
are learned in a fully unsupervised manner (at no time does our model see a depth map), and only
arise out of the necessity to reason about voxel visibility. The background of the depth map is
unconstrained in our model, which is why depth values may deviate from ground truth.
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A.12 Pose Extrapolation
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Ground Truth DeepVoxels Nearest Neighbor

Ground Truth DeepVoxels Nearest Neighbor

Ground Truth DeepVoxels Nearest Neighbor

Figure A.11: Our training set comprises views sampled at random on the surface of the northern
hemisphere. Images in each row are consistently scaled and cropped. We show views that require
the model to extrapolate more aggressively - such as increasing the camera distance by a factor
of 1.3 (top row), decreasing the camera distance by a factor of 0.75 (middle row) or leaving the
northern hemisphere altogether and sampling from the southern hemisphere (bottom row). We
show a comparison of ground truth (left column), our model output (center column), and the nearest
neighbor in the training set (right column). For the proposed model, detail is lost especially in cases
where the model has either never seen these points on the object (bottom row), or where details
are seen from closeby for the first time (middle row). Generally, however, the performance degrades
gracefully - rigid body motion and general geometry stay consistent, with loss in fine-scale detail
and a few failures in occlusion reasoning.
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Scene Representation Networks

additional results

B.1 Additional Results on Neural Ray Marching

Computation of Normal Maps We found that normal maps visualize fine surface detail sig-

nificantly better than depth maps (see Fig. B.1), and thus only report normal maps in the main

submission. We compute surface normals as the cross product of the numerical horizontal and

vertical derivatives of the depth map.

Ray Marching Progress Visualization The z-coordinates of running and final estimates of

intersections in each iteration of the ray marcher in camera coordinates yield depth maps, which

visualize every step of the ray marcher. Fig. B.1 shows two example ray marches, along with their

final normal maps.

B.2 Comparison to DeepVoxels

We compare performance in single-scene novel-view synthesis with the recently proposed DeepVoxels

architecture [1] on their four synthetic objects. DeepVoxels proposes a 3D-structured neural scene

representation in the form of a voxel grid of features. Multi-view and projective geometry are hard-

coded into the model architecture. We further report accuracy of the same baselines as in [1]: a

Pix2Pix architecture [6] that receives as input the per-pixel view direction, as well as the methods

proposed by [4] as well as by [5] and [104].

Table B.1 compares PSNR and SSIM of the proposed architecture and the baselines, averaged

over all 4 scenes. We outperform the best baseline, DeepVoxels [1], by more than 3 dB. Qualitatively,
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Raycast progress - from top left to bottom right

Final Normal Map

Raycast progress - from top left to bottom right

Final Normal Map

Figure B.1: Visualizations of ray marching progress and the final normal map. Note that the
uniformly colored background does not constrain the depth - as a result, the depth is unconstrained
around the silhouette of the object. Since the final normal map visualizes surface detail much better,
we only report the final normal map in the main document.
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Figure B.2: Qualitative results on DeepVoxels objects. For each object: Left: Normal map of
reconstructed geometry. Center: SRns output. Right: Ground Truth.

Figure B.3: Undersampled letters on the side of the cube (ground truth images). Lines of letters
are less than two pixels wide, leading to significant aliasing. Additionally, the 2D downsampling as
described in [1] introduced blur that is not multi-view consistent.

Figure B.4: By using a U-Net renderer similar to [1], we can reconstruct the undersampled letters.
In exchange, we lose the guarantee of multi-view consistency. Left: Reconstructed normal map.
Center: SRNs output. Right: ground truth.
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PSNR SSIM
[4] 21.22 0.90
[5] 21.22 0.90
Pix2Pix [6] 23.63 0.92
DeepVoxels [1] 30.55 0.97
SRNs 33.03 0.97

Table B.1: Quantitative comparison to DeepVoxels [1]. With 3 orders of magnitude fewer parame-
ters, we achieve a 3dB boost, with reduced multi-view inconsistencies.

DeepVoxels displays significant multi-view inconsistencies in the form of flickering artifacts, while

the proposed method is almost perfectly multi-view consistent. We achieve this result with 550k pa-

rameters per model, as opposed to the DeepVoxels architecture with more than 160M free variables.

However, we found that SRNs produce blurry output for some of the very high-frequency textural

detail - this is most notable with the letters on the sides of the cube. Fig. B.3 demonstrates why

this is the case. Several of the high-frequency textural detail of the DeepVoxels objects are heavily

undersampled. For instance, lines of letters on the sides of the cube often only occupy a single pixel.

As a result, the letters alias across viewing angles. This violates one of our key assumptions, namely

that the same (x, y, z) ∈ R
3 world coordinate always maps to the same color, independent of the

viewing angle. As a result, it is impossible for our model to generate these details. We note that

detail that is not undersampled, such as the CVPR logo on the top of the cube, is reproduced with

perfect accuracy. However, we can easily accommodate for this undersampling by using a 2D CNN

renderer. This amounts to a trade-off of our guarantee of multi-view consistency discussed in Sec. 3

of the main chapter with robustness to faulty training data. Fig. B.2 shows the cube rendered with

a U-Net based renderer – all detail is replicated truthfully.

B.3 Reproducibility

In this section, we discuss steps we take to allow the community to reproduce our results. All models

were evaluated on the test sets exactly once.

B.3.1 Architecture Details

Scene representation network Φ In all experiments, Φ is parameterized as a multi-layer per-

ceptron (MLP) with ReLU activations, layer normalization before each nonlinearity [141], and four

layers with 256 units each. In all generalization experiments in the main chapter, its weights φ are

the output of the hypernetwork Ψ. In the DeepVoxels comparison (see Sec.B.2), where a separate Φ

is trained per scene, parameters of φ are directly initialized using the Kaiming Normal method [142].
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Figure B.5: Ray-marcher focused visualization of SRNs. At the heart of SRNs lies a continuous,
3D-aware neural scene representation, Φ, which represents a scene as a function that maps (x, y, z)
world coordinates to a feature representation of the scene at those coordinates. To render Φ, a
neural ray-marcher interacts with Φ via world coordinates along camera rays, parameterized via
their distance d to the camera projective center. Ray Marching begins at a distance d0 close to the
camera. In each step, the scene representation network Φ is queried at the current world coordinates
xi. The resulting feature vector vi is fed to the Ray Marching LSTM that predicts a step length δi+1.
The world coordinates are updated according to the new distance to the camera, di+1 = di + δi+1.
This is repeated for a fixed number of iterations, n. The features at the final world coordinates
vn = Φ(xn) are then translated to an RGB color by the pixel generator.

Hypernetwork Ψ In generalization experiments, a hypernetwork Ψ maps a latent vector zj to

the weights of the respective scene representation φj . Each layer of Φ is the output of a separate

hypernetwork. Each hypernetwork is parameterized as a multi-layer perceptron with ReLU acti-

vations, layer normalization before each nonlinearity [141], and three layers (where the last layer

has as many units as the respective layer of Φ has weights). In the Shapenet and Shepard-Metzler

experiments, where the latent codes zj have length 256, hypernetworks have 256 units per layer.

In the Basel face experiment, where the latent codes zj have length 224, hypernetworks have 224

units per layer. Weights are initialized by the Kaiming Normal method, scaled by a factor 0.1. We

empirically found this initialization to stabilize early training.

Ray marching LSTM In all experiments, the ray marching LSTM is implemented as a vanilla

LSTM with a hidden state size of 16. The initial state is set to zero.

Pixel Generator In all experiments, the pixel generator is parameterized as a multi-layer per-

ceptron with ReLU activations, layer normalization before each nonlinearity [141], and five layers

with 256 units each. Weights are initialized with the Kaiming Normal method [142].
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B.3.2 Time & Memory Complexity

Scene representation network Φ Φ scales as a standard MLP. Memory and runtime scale

linearly in the number of queries, therefore quadratic in image resolution. Memory and runtime

further scale linearly with the number of layers and quadratically with the number of units in each

layer.

Hypernetwork Ψ Ψ scales as a standard MLP. Notably, the last layer of Ψ predicts all parameters

of the scene representation Φ. As a result, the number of weights scales linearly in the number of

weights of Φ, which is significant. For instance, with 256 units per layer and 4 layers, Φ has

approximately 2 × 105 parameters. In our experiments, Ψ is parameterized with 256 units in all

hidden layers. The last layer of Ψ then has approximately 5 × 107 parameters, which is the bulk

of learnable parameters in our model. Please note that Ψ only has to be queried once to obtain Φ,

at which point it could be discarded, as both the pixel generation and the ray marching only need

access to the predicted Φ.

Differentiable Ray Marching Memory and runtime of the differentiable ray marcher scale lin-

early in the number of ray marching steps and quadratically in image resolution. As it queries Φ

repeatedly, it also scales linearly in the same parameters as Φ.

Pixel Generator The pixel generator scales as a standard MLP. Memory and runtime scale

linearly in the number of queries, therefore quadratic in image resolution. Memory and runtime

further scale linearly with the number of layers and quadratically with the number of units in each

layer.

B.3.3 Dataset Details

Shepard-Metzler objects We modified an open-source implementation of a Shepard-Metzler

renderer https://github.com/musyoku/gqn-dataset-renderer.git to generate meshes of Shepard-

Metzler objects, which we rendered using Blender to have full control over camera intrinsic and

extrinsic parameters consistent with other presented datasets.

Shapenet v2 cars We render each object from random camera perspectives distributed on a

sphere with radius 1.3 using Blender. We disabled specularities, shadows and transparencies and

used environment lighting with energy 1.0. We noticed that a few cars in the dataset were not scaled

optimally, and scaled their bounding box to unit length. A few meshes had faulty vertices, resulting

in a faulty bounding box and subsequent scaling to a very small size. We discarded those 40 out of

2473 cars.

https://github.com/musyoku/gqn-dataset-renderer.git
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Shapenet v2 chairs We render each object from random camera perspectives distributed on a

sphere with radius 2.0 using Blender. We disabled specularities, shadows and transparencies and

used environment lighting with energy 1.0.

Faces dataset We use the Basel Face dataset to generate meshes with different identities at

random, where each parameter is sampled from a normal distribution with mean 0 and standard

deviation of 0.7. For expressions, we use the blendshape model of [143], and sample expression

parameters uniformly in (−0.4, 1.6).

DeepVoxels dataset We use the dataset as presented in [1].

B.3.4 SRNs Training Details

General details

Multi-Scale training Our per-pixel formulation naturally allows us to train in a coarse-to-fine

setting, where we first train the model on downsampled images in a first stage, and then increase

the resolution of images in stages. This allows larger batch sizes at the beginning of the training,

which affords more independent views for each object, and is reminiscent of other coarse-to-fine

approaches [73].

Solver For all experiments, we use the ADAM solver with β1 = 0.9, β2 = 0.999.

Implementation & Compute We implement all models in PyTorch. All models were trained

on single GPUs of the type RTX6000 or RTX8000.

Hyperparameter search Training hyperparameters for SRNs were found by informal search –

we did not perform a systematic grid search due to the high computational cost.

Per-experiment details

For a resolution of 64× 64, we train with a batch size of 72. Due to the memory complexity being

quadratic in the image sidelength, we decrease the batch size by a factor of 4 when we double the

image resolution. λdepth is always set to 1× 10−3 and λlatent is set to 1. The ADAM learning rate

is set to 4× 10−4 if not reported otherwise.

Shepard-Metzler experiment We directly train our model on images of resolution 64× 64 for

352 epochs.
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Shapenet cars We train our model in 2 stages. We first train on a resolution of 64 × 64 for 5k

iterations. We then increase the resolution to 128 × 128. We train on the high resolution for 70

epochs. The ADAM learning rate is set to 5× 10−5.

Shapenet chairs We train our model in 2 stages. We first train on a resolution of 64× 64 for 20k

iterations. We then increase the resolution to 128× 128. We train our model for 12 epochs.

Basel face experiments We train our model in 2 stages. We first train on a resolution of 64×64

for 15k iterations. We then increase the resolution to 128× 128 and train for another 5k iterations.

DeepVoxels experiments We train our model in 3 stages. We first train on a resolution of

12 × 128 with a learning rate of 4 × 10−4 for 20k iterations. We then increase the resolution to

256 × 256, and lower the learning rate to 1 × 10−4 and train for another 30k iterations. We then

increase the resolution to 512 × 512, and lower the learning rate to 4 × 10−6 and train for another

30k iterations.

B.4 Relationship to per-pixel autoregressive methods

With the proposed per-pixel generator, SRNs are also reminiscent of autoregressive per-pixel archi-

tectures, such as PixelCNN and PixelRNN [70, 111]. The key difference to autoregressive per-pixel

architectures lies in the modeling of the probability p(I) of an image I ∈ R
H×W×3. PixelCNN and

PixelRNN model an image as a one-dimensional sequence of pixel values I1, ..., IH×W , and estimate

their joint distribution as

p(I) =
H×W∏

i=1

p(Ii|I1, ..., Ii−1). (B.1)

Instead, conditioned on a scene representation Φ, pixel values are conditionally independent, as our

approach independentaly and deterministically assigns a value to each pixel. The probability of

observing an image I thus simplifies to the probability of observing a scene Φ under extrinsic E and

intrinsic K camera parameters

p(I) = p(Φ)p(E)p(K). (B.2)

This conditional independence of single pixels conditioned on the scene representation further mo-

tivates the per-pixel design of the rendering function Θ.
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B.5 Baseline Discussions

B.5.1 Deterministic Variant of GQN

Deterministic vs. Non-Deterministic [11] propose a powerful probabilistic framework for

modeling uncertainty in the reconstruction due to incomplete observations. However, here, we

are exclusively interested in investigating the properties of the scene representation itself, and this

submission discusses SRNs in a purely deterministic framework. To enable a fair comparison, we

thus implement a deterministic baseline inspired by the Generative Query Network [11]. We note

that the results obtained in this comparison are not necessarily representative of the performance

of the unaltered Generative Query Network. We leave a formulation of SRNs in a probabilistic

framework and a comparison to the unaltered GQN to future work.

Architecture As representation network architecture, we choose the ”Tower” representation, and

leave its architecture unaltered. However, instead of feeding the resulting scene representation r

to a convolutional LSTM architecture to parameterize a density over latent variables z, we instead

directly feed the scene representation r to a generator network. We use as generator a deterministic,

autoregressive, skip-convolutional LSTM C, the deterministic equivalent of the generator architec-

ture proposed in [11]. Specifically, the generator can be described by the following equations:

Initial state (c0,h0,u0) = (0,0,0) (B.3)

Pre-process current canvas pl = κ(ul) (B.4)

State update (cl+1,hl+1) = C(E, r, cl,hl,pl) (B.5)

Canvas update ul+1 = ul +∆(hl+1) (B.6)

Final output x = η(uL), (B.7)

with timestep l and final timestep L, LSTM output cl and cell hl states, the canvas ul, a down-

sampling network κ, the camera extrinsic parameters E, an upsampling network ∆, and a 1 × 1

convolutional layer η. Consistent with [11], all up- and downsampling layers are convolutions of size

4 × 4 with stride 4. To account for the higher resolution of the Shapenet v2 car and chair images,

we added a further convolutional layer / transposed convolution where necessary.

Training On both the cars and chairs datasets, we trained for 180, 000 iterations with a batch size

of 140, taking approximately 6.5 days. For the lower-resolution Shepard-Metzler objects, we trained

for 160, 000 iterations at a batch size of 192, or approximately 5 days.

Testing For novel view synthesis on the training set, the model receives as input the 15 nearest

neighbors of the novel view in terms of cosine similarity. For two-shot reconstruction, the model



APPENDIX B. SCENE REPRESENTATION NETWORKS ADDITIONAL RESULTS 69

receives as input whichever of the two reference views is closer to the novel view in terms of cosine

similarity. For one-shot reconstruction, the model receives as input the single reference view.

B.5.2 Tatarchenko et al.

Architecture We implement the exact same architecture as described in [4], with approximately

70 · 106 parameters.

Training For training, we choose the same hyperparameters as proposed in [4]. As we assume no

knowledge of scene geometry, we do not supervise the model with a depth map. As we observed

the model to overfit, we stopped training early based on model performance on the held-out, official

Shapenet v2 validation set.

Testing For novel view synthesis on the training set, the model receives as input the nearest

neighbor of the novel view in terms of cosine similarity. For two-shot reconstruction, the model

receives as input whichever of the two reference views is closer to the novel view. Finally, for

one-shot reconstruction, the model receives as input the single reference view.

B.5.3 Worrall et al.

Architecture Please see Fig. B.6 for a visualization of the full architecture. The design choices in

this architecture (nearest-neighbor upsampling, leaky ReLU activations, batch normalization) were

made in accordance with [5].

Training For training, we choose the same hyperparameters as proposed in [5].

Testing For novel view synthesis on the training set, the model receives as input the nearest

neighbor of the novel view in terms of cosine similarity. For two-shot reconstruction, the model

receives as input whichever of the two reference views is closer to the novel view. Finally, for

one-shot reconstruction, the model receives as input the single reference view.

B.6 Differentiable Ray-Marching in the context of classical

renderers

The proposed neural ray-marcher is inspired by the classic sphere tracing algorithm [110]. Sphere

tracing was originally developed to render scenes represented via analytical signed distance functions.

It is defined by a special choice of the step length: each step has a length equal to the signed distance

to the closest surface point of the scene. Since this distance is only zero on the surface of the scene,
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Figure B.6: Architecture of the baseline method proposed in [5].
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the algorithm takes non-zero steps until it has arrived at the surface, at which point no further steps

are taken. A major downside of sphere-tracing is its weak convergence guarantee: Sphere tracing

is only guaranteed to converge for an infinite number of steps. This is easy to see: For any fixed

number of steps, we can construct a scene where a ray is parallel to a close surface (or falls through

a slim tunnel) and eventually intersects a scene surface. For any constant number of steps, there

exists a surface parallel to the ray that is so close that the ray will not reach the target surface.

In classical sphere-tracing, this is circumvented by taking a large number of steps that generally

take the intersection estimate within a small neighborhood of the scene surface – the color at this

point is then simply defined as the color of the closest surface. However, this heuristic can still fail

in constructed examples such as the one above. Extensions of sphere tracing propose heuristics to

modifying the step length to speed up convergence [111]. The Ray-Marching LSTM instead has the

ability to learn the step length. The key driver of computational and memory cost of the proposed

rendering algorithm is the ray-marching itself: In every step of the ray-marcher, for every pixel, the

scene representation φ is evaluated. Each evaluation of φ is a full forward pass through a multi-layer

perceptron. See B.3.2 for an exact analysis of memory and computational complexity of the different

components.

Other classical rendering algorithms usually follow a different approach. In modern computer

graphics, scenes are often represented via explicit, discretized surface primitives - such as is the case

in meshes. This allows rendering via rasterization, where scene geometry is projected onto the image

plane of a virtual camera in a single step. As a result, rasterization is computationally cheap, and

has allowed for real-time rendering that has approached photo-realism in computer graphics.

However, the image formation model of rasterization is not appropriate to simulate physically

accurate image formations that involve proper light transport, view-dependent effects, participating

media, refraction, translucency etc. As a result, physics-based rendering usually uses ray-tracing

algorithms, where for each pixel, a number of rays are traced from the camera via all possible paths

to light sources through the scene. If the underlying scene representations are explicit, discrete

representations – such as meshes – the intersection testing required is again cheap. Main drivers of

computational complexity in such systems are then the number of rays that need to be traced to

appropriately sample all paths to lights sources that contribute to the value of a single pixel.

In this context, the proposed ray-marcher can be thought of as a sphere-tracing-inspired ray-

tracer for implicitly defined scene geometry. It does not currently model multi-bounce ray-tracing,

but could potentially be extended in the future (see B.8).
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B.7 Trade-offs of the Pixel Generator vs. CNN-based ren-

derers

As described in the main chapter, the pixel generator comes with a guarantee of multi-view con-

sistency compared to a 2D-CNN based rendering network. On the flip side, we cannot make use

of progress in the design of novel CNN architectures that save memory by introducing resolution

bottlenecks and skip connections, such as the U-Net [93]. This means that the pixel generator is

comparably memory-hungry, as each layer operates on the full resolution of the image to be gener-

ated. Furthermore, CNNs have empirically been demonstrated to be able to generate high-frequency

image detail easily. It is unclear what the limitations of the proposed pipeline are with respect to

generating high-frequency textural detail. We note that the pixel generator is not a necessary com-

ponent of SRNs, and can be replaced by a classic 2D-CNN based renderer, as we demonstrate in

B.2.

B.8 Future work

Applications outside of vision. SRNs have promising applications outside of vision. Neural

scene representations are a core aspect of artificial intelligence, as they allow an agent to model

its environment, navigate, and plan interactions. Thus, natural applications of SRNs lie in robotic

manipulation or as the world model of an independent agent.

Extending SRNs to other image formation models. SRNs could be extended to other image

formation models, such as computer tomography or magnetic resonance imaging. All that is required

is a differentiable forward model of the image formation. The ray-marcher could be adapted accord-

ingly to integrate features along a ray or to sample at pre-defined locations. For image formation

models that observe scenes directly in 3D, the ray-marcher may be left out completely, and φ may

be sampled directly.

Probabilistic formulation. An interesting avenue of future work is to extend SRNs to a proba-

bilistic model that can infer a probability distribution over feasible scenes consistent with a given set

of observations. In the following, we formulate one such approach, very similar to the formulation

of Kumar et al. [61], which is in turn based on the work of Eslami et al. [11]. Please note that this

formulation is not experimentally verified in the context of SRNs and is described here purely to

facilitate further research in this direction.
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Formally, the model can be summarized as:

ri =M(Ii,Ei,Ki) (B.8)

r =
∑

i

ri (B.9)

z ∼ PΘ(z|r) (B.10)

φ = Ψ(z) (B.11)

I = Θ(Φφ,E,K) (B.12)

We assume that we are given a set of instance datasets D = {Cj}
M
j=1, where each Cj consists of

tuples {(Ii,Ei,Ki)}
N
i=1. For a single scene C with n observations, we first replicate and concatenate

the camera pose Ei and intrinsic parameters Ki of each observations to the image channels of the

corresponding 2D image Ii. Using a learned convolutional encoderM , we encode each of the n obser-

vations to a code vector ri. These code vectors ri are then summed to form a permutation-invariant

representation of the scene r. Via an autoregressive DRAW model [144], we form a probability

distribution Pθ that is conditioned on the code vector r and sample latent variables z. z is decoded

into the parameters of a scene representation network, φ, via a hypernetwork Ψ(z) = φ. Lastly,

via our differentiable rendering function Θ, we can render images I from Φφ as described in the

main chapter. This allows to train the full model end-to-end given only 2D images and their camera

parameters. We note that the resulting optimization problem is intractable and requires the opti-

mization of an evidence lower bound via an approximate posterior, which we do not derive here –

please refer to [61]. Similarly to [61], this formulation will lead to multi-view consistent renderings

of each scene, as the scene representation Φ stays constant across queries of Θ.

View- and lighting-dependent effects, translucency, and participating media. Another

exciting direction for future work is to model further aspects of realistic scenes. One such aspect

is view- and lighting dependent effects, such as specularities. For fixed lighting, the pixel generator

could receive as input the direction of the camera ray in world coordinates, and could thus reason

about the view-dependent color of a surface. To model simple lighting-dependent effects, the pixel

generator could further receive the light ray direction as an input (assuming no occlusions). Lastly,

the proposed formulation could also be extended to model multiple ray bounces in a ray-casting

framework. To model translucency and participating media, the ray-marcher could be extended to

sum features along a ray instead of only sampling a feature at the final intersection estimate.
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[69] Aäron van den Oord, Nal Kalchbrenner, Oriol Vinyals, Lasse Espeholt, Alex Graves, and

Koray Kavukcuoglu. Conditional image generation with pixelcnn decoders. In Proc. NIPS,

pages 4797–4805, 2016.

[70] Aaron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural

networks. In Proc. ICML, 2016.

[71] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil

Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Proc. NIPS, 2014.

[72] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial
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